New Magnetic Core-Metal Oxide Shell Nanoparticles for Photocatalytic Water-Splitting

用于光催化水分解的新型磁核-金属氧化物壳纳米粒子

基本信息

  • 批准号:
    2581025
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

During this DPhil project, research will focus on the design of novel technologies that use sunlight and water to produce hydrogen fuel. This project falls within the ESPRC Energy research area.The extreme weather caused by global warming is already creating humanitarian crisis. Due to severe droughts, people in Niger are fighting to stop their land turning into an inhospitable desert; Madagascar has seen four major storms in just one month (February 2022) that have "wrecked the island nation"; warming of the oceans threatens all its inhabitants and consequently, the lives of 3 billion people that depend on the food from the ocean and its coasts. As is commonly known, a major cause of global warming is rising carbon dioxide (CO2) levels in the atmosphere. CO2 is a greenhouse gas which traps heat, preventing its escape from Earth into space. CO2 emissions released from burning of fossils fuels, such as petrol, diesel, and coal, are significantly contributing to the rising atmospheric levels. This highlights why there is a great need for green alternatives to fossil fuels. Hydrogen (H2) is a realistic alternative green fuel. The emissions of H2 fuel are very clean and carbon-free; when burnt, H2 reacts with oxygen to produce only water. Further, gram for gram, significantly more energy is released when burning H2 compared to any fossil fuel.Before H2 can replace fossil fuels, a few technological challenges need overcoming. One of these challenges is producing H2 in a carbon-free and sustainable way. A promising solution, known as solar-catalytic water-splitting (SCWS), uses specifically designed technology to generate H2 from sunlight and water. This technology is incredibly sustainable. It uses two of the most abundant resources available to mankind - the sun and the sea. Due to low H2-generation efficiencies, SCWS technology is not currently commercially-viable. When SCWS systems absorb sunlight, they convert the solar energy into useful reaction energy and much-less-useful heat energy. The reaction energy converts water to H2. Current SCWS technologies have low efficiencies because they convert too much of the sunlight into heat energy and not enough into reaction energy.The research in this project will focus on designing new, more efficient SCWS technology that can use sunlight more effectively by converting a higher proportion of the absorbed solar energy into useful reaction energy for H2 generation. The approach of this research is to use known advantageous design features of various current SCWS systems and combine them into one highly efficient SCWS system. New advantageous features may also be discovered in this process. The main challenge will be figuring out how to make the new systems as this chemistry can be tricky and unpredictable. Through contributions from this research and from research by other scientists in the field, hopefully one day, SCWS technology will be used to sustainably generate H2 fuel anywhere that water and sunlight are available.
在这个博士项目中,研究将集中在利用阳光和水生产氢燃料的新技术的设计上。该项目福尔斯ESPRC能源研究领域,全球变暖导致的极端天气已经造成人道主义危机。由于严重的干旱,尼日尔的人们正在努力阻止他们的土地变成荒凉的沙漠;马达加斯加在短短一个月内(2022年2月)经历了四次大风暴,这些风暴“摧毁了这个岛国”;海洋变暖威胁着所有居民,因此,30亿人的生命依赖于海洋和海岸的食物。众所周知,全球变暖的一个主要原因是大气中二氧化碳(CO2)水平的上升。二氧化碳是一种温室气体,它能捕获热量,防止热量从地球逃逸到太空。燃烧化石燃料(如汽油、柴油和煤炭)释放的二氧化碳排放量是大气水平上升的重要原因。这突出说明了为什么非常需要化石燃料的绿色替代品。氢气(H2)是一种现实的替代绿色燃料。氢气燃料的排放物非常清洁,不含碳;燃烧时,氢气与氧气反应,只生成水。此外,每克燃烧氢气时释放的能量比任何化石燃料都要多得多。在氢气取代化石燃料之前,还需要克服一些技术挑战。这些挑战之一是以无碳和可持续的方式生产氢气。一个有前途的解决方案,称为太阳能催化水分解(SCWS),使用专门设计的技术从阳光和水中产生H2。这项技术是非常可持续的。它利用了人类最丰富的两种资源--太阳和海洋。由于H2生成效率低,SCWS技术目前在商业上不可行。当SCWS系统吸收太阳光时,它们将太阳能转化为有用的反应能和有用得多的热能。反应能量将水转化为H2。目前的SCWS技术效率低,因为它们将太多的太阳能转化为热能,而不足以转化为反应能。本项目的研究将集中在设计新的,更有效的SCWS技术,通过将更高比例的吸收的太阳能转化为有用的反应能来产生H2,从而更有效地利用太阳能。本研究的方法是利用目前各种SCWS系统的已知的有利设计特征,并将它们联合收割机组合成一个高效的SCWS系统。在该过程中还可以发现新的有利特征。主要的挑战将是弄清楚如何制造新系统,因为这种化学反应可能是棘手和不可预测的。通过这项研究和该领域其他科学家的研究,希望有一天,SCWS技术将用于在任何有水和阳光的地方可持续地产生H2燃料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Development of core/shell nano-composite magnetic particles by low oxygen powder metallurgy
低氧粉末冶金核/壳纳米复合磁性粒子的研制
  • 批准号:
    22KF0432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2400463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research and development of powder based magnetic core with small iron loss contributing to innovation in power electronics
小铁损粉末磁芯的研发有助于电力电子创新
  • 批准号:
    23H01398
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next Generation Magnetic Resonance and Magnetic Resonance Imaging for Core Analysis
用于岩心分析的下一代磁共振和磁共振成像
  • 批准号:
    571885-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2106562
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstruction of geomagnetic field and its influence on history of the Earth and life using magnetic microscopy around the formation of inner core
利用磁显微镜重建地磁场及其对地球历史和生命的影响围绕内核的形成
  • 批准号:
    21H04523
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Core loss mechanisms in soft magnetic nanostructures
软磁纳米结构中的铁损机制
  • 批准号:
    LP190100294
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Construction of high-speed magnetic property evaluation system under inverter excitation for high-speed high-power density motor core
高速大功率密度电机铁芯逆变励磁高速磁性能评估系统构建
  • 批准号:
    20K04509
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detecting and Inverting Magnetic Waves for the Structure and Dynamics of Earth's Core
探测和反演磁波以了解地核的结构和动力学
  • 批准号:
    1915807
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Compatibility between stable divertor detachment and core plasma performance with 3D edge magnetic field structure change
稳定偏滤器脱离与核心等离子体性能与 3D 边缘磁场结构变化的兼容性
  • 批准号:
    19H01878
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了