Engineering Sialylation Pathways in Insect Cells

昆虫细胞中的唾液酸化途径工程

基本信息

  • 批准号:
    6839510
  • 负责人:
  • 金额:
    $ 27.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-01-08 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

EXCEED THE SPACE PROVIDED. Insect cells are widely utilized for the production of heterologous glycoproteins, which are proteins that include oligosaccharide attachments. Many of the most valuable therapeutics are glycoproteins and the composition of the attached oligosaccharide can significantly impact the properties and value of these therapeutics. In particular, the presence or absence of sialic acid on an oligosaccharide can alter the glycoprotein's structure, stability, biological activity, and in vivo circulatory half-life. Glycoproteins containing oligosaccharides missing sialic acid are removed from human circulation and this rapid clearance will diminish the therapeutic effectiveness of a glycoprotein biopharmaceutical. Unfortunately, insect cells do not generate significant levels, if any, of sialylated glycoproteins, and this inability to sialylate severely limits the further application of the insect cell expression system. The objective of this project is to manipulate the metabolic pathways in insect cells so that these cells will produce high levels of complex, fully sialylated glycoproteins. A critical sialylation pathway involves the post-translational addition of the donor sialic acid substrate, cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac or CMP-sialic acid) onto a specific acceptor carbohydrate substrate ending in galactose (Gal) via a reaction catalyzed by the enzyme sialyltransferase. Each of these three critical components (donor substrate, acceptor substrate, and sialyltransferase enzyme) is limiting or absent in insect cell lines so metabolic engineering strategies will be implemented to eliminate the bottlenecks. Limitations in CMP-Neu5Ac will be overcome by expressing essential enzymes in order to complete the intracellular synthesis of the donor substrate. Expression of heterologous glycosyltransferase enzymes, suppression of unfavorable processing reactions, and examination of alternative insect cell hosts will overcome limitations in Gal acceptors. Combining these pathway modifications with sialyltransferase expression should ensure full sialylation in insect cells. Completion of this project will lead to an increase in the number of expression systems that can produce the high-value sialylated therapeutic glycoproteins desired by the health care community. In this way, sialylation pathway engineering may increase glycoprotein quality and lower health care costs for patients receiving these therapeutics. PERFORMANCE SITE ========================================Section End===========================================
超出所提供的空间。 昆虫细胞被广泛用于生产异源糖蛋白,异源糖蛋白是包括寡糖附着的蛋白质。许多最有价值的治疗剂是糖蛋白,并且所连接的寡糖的组成可以显著影响这些治疗剂的性质和价值。特别地,寡糖上唾液酸的存在或不存在可以改变糖蛋白的结构、稳定性、生物活性和体内循环半衰期。含有缺少唾液酸的寡糖的糖蛋白从人体循环中被去除,这种快速清除将降低糖蛋白生物药物的治疗效果。不幸的是,昆虫细胞不产生显著水平的唾液酸化糖蛋白(如果有的话),并且这种不能唾液酸化严重限制了昆虫细胞表达系统的进一步应用。该项目的目标是操纵昆虫细胞中的代谢途径,使这些细胞产生高水平的复杂的、完全唾液酸化的糖蛋白。关键的唾液酸化途径涉及供体唾液酸底物、胞苷一磷酸-N-乙酰神经氨酸(CMP-Neu 5Ac或CMP-唾液酸)通过唾液酸转移酶催化的反应翻译后添加到以半乳糖(Gal)结尾的特定受体碳水化合物底物上。这三种关键组分(供体底物、受体底物和唾液酸转移酶)中的每一种在昆虫细胞系中都是有限的或不存在的,因此将实施代谢工程策略以消除瓶颈。CMP-Neu 5Ac的局限性将通过表达必需酶来克服,以完成供体底物的细胞内合成。异源糖基转移酶的表达,抑制不利的加工反应,和检查替代昆虫细胞宿主将克服Gal受体的局限性。将这些途径修饰与唾液酸转移酶表达相结合应确保昆虫细胞中的完全唾液酸化。该项目的完成将导致表达系统数量的增加,这些表达系统可以产生医疗保健界所需的高价值唾液酸化治疗性糖蛋白。通过这种方式,唾液酸化途径工程可以提高糖蛋白质量并降低接受这些治疗的患者的医疗保健成本。性能现场=

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL J BETENBAUGH其他文献

MICHAEL J BETENBAUGH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL J BETENBAUGH', 18)}}的其他基金

Integrated and Continuous Manufacturing of an Influenza Vaccine
流感疫苗的集成连续生产
  • 批准号:
    10407154
  • 财政年份:
    2021
  • 资助金额:
    $ 27.75万
  • 项目类别:
Integrated and Continuous Manufacturing of an Influenza Vaccine
流感疫苗的集成连续生产
  • 批准号:
    10491864
  • 财政年份:
    2021
  • 资助金额:
    $ 27.75万
  • 项目类别:
Evolving membrane proteins for high-level expression in modified mammalian cells
用于在修饰的哺乳动物细胞中高水平表达的进化膜蛋白
  • 批准号:
    8536850
  • 财政年份:
    2010
  • 资助金额:
    $ 27.75万
  • 项目类别:
Evolving membrane proteins for high-level expression in modified mammalian cells
用于在修饰的哺乳动物细胞中高水平表达的进化膜蛋白
  • 批准号:
    8310048
  • 财政年份:
    2010
  • 资助金额:
    $ 27.75万
  • 项目类别:
Evolving membrane proteins for high-level expression in modified mammalian cells
用于在修饰的哺乳动物细胞中高水平表达的进化膜蛋白
  • 批准号:
    8030307
  • 财政年份:
    2010
  • 资助金额:
    $ 27.75万
  • 项目类别:
Evolving membrane proteins for high-level expression in modified mammalian cells
用于在修饰的哺乳动物细胞中高水平表达的进化膜蛋白
  • 批准号:
    8152106
  • 财政年份:
    2010
  • 资助金额:
    $ 27.75万
  • 项目类别:
Metabolic Engineering to Overcome N-Glycosylation Deficiency in Mammalian Cells
克服哺乳动物细胞 N-糖基化缺陷的代谢工程
  • 批准号:
    7088014
  • 财政年份:
    2006
  • 资助金额:
    $ 27.75万
  • 项目类别:
Metabolic Engineering to Overcome N-Glycosylation Deficiency in Mammalian Cells
克服哺乳动物细胞 N-糖基化缺陷的代谢工程
  • 批准号:
    7394514
  • 财政年份:
    2006
  • 资助金额:
    $ 27.75万
  • 项目类别:
Metabolic Engineering to Overcome N-Glycosylation Deficiency in Mammalian Cells
克服哺乳动物细胞 N-糖基化缺陷的代谢工程
  • 批准号:
    7215240
  • 财政年份:
    2006
  • 资助金额:
    $ 27.75万
  • 项目类别:
Engineering Sialylation Pathways in Insect Cells
昆虫细胞中的唾液酸化途径工程
  • 批准号:
    6602823
  • 财政年份:
    2003
  • 资助金额:
    $ 27.75万
  • 项目类别:

相似海外基金

Regulation of IgG Sialylation
IgG 唾液酸化的调节
  • 批准号:
    10749167
  • 财政年份:
    2023
  • 资助金额:
    $ 27.75万
  • 项目类别:
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
  • 批准号:
    10928423
  • 财政年份:
    2023
  • 资助金额:
    $ 27.75万
  • 项目类别:
Regulatory mechanism of sialylation of N-glycans by focal adhesion kinase (FAK) and its biological significance
粘着斑激酶(FAK)对N-聚糖唾液酸化的调控机制及其生物学意义
  • 批准号:
    22K06615
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sialylation of TLR2 Induces Osteoclast Fusion and Th 17 differentiation During Aging
TLR2 唾液酸化诱导衰老过程中破骨细胞融合和 Th 17 分化
  • 批准号:
    10430544
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
Sialylation in the Maintenance and Metabolic Plasticity of Neural Stem Cell-Like Brain Tumor Cells
唾液酸化在神经干细胞样脑肿瘤细胞的维持和代谢可塑性中的作用
  • 批准号:
    10538769
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
The Role of Defective CFTR Ion Transport on Mucin Sialylation and its Consequences on Mucus Physiology
CFTR 离子传输缺陷对粘蛋白唾液酸化的作用及其对粘液生理学的影响
  • 批准号:
    10464260
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
The Role of Defective CFTR Ion Transport on Mucin Sialylation and its Consequences on Mucus Physiology
CFTR 离子传输缺陷对粘蛋白唾液酸化的作用及其对粘液生理学的影响
  • 批准号:
    10734036
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
A novel, transferable sialylation-mediated mechanism of chemoradioresistance in GI cancer
胃肠道癌症中一种新型的、可转移的唾液酸化介导的放化疗耐药机制
  • 批准号:
    10556396
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
Sialylation of TLR2 Induces Osteoclast Fusion and Th 17 differentiation During Aging
TLR2 唾液酸化诱导衰老过程中破骨细胞融合和 Th 17 分化
  • 批准号:
    10650877
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
Sialylation in the Maintenance and Metabolic Plasticity of Neural Stem Cell-Like Brain Tumor Cells
唾液酸化在神经干细胞样脑肿瘤细胞的维持和代谢可塑性中的作用
  • 批准号:
    10676849
  • 财政年份:
    2022
  • 资助金额:
    $ 27.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了