Perception and Inter-Observer Variability in Mammography

乳腺 X 线摄影的感知和观察者间差异

基本信息

项目摘要

DESCRIPTION (provided by applicant): Inter-observer variability in mammogram reading has been well documented in the literature. Various factors have been used to explain this variability; among them, the most significant are related to the management of perceived findings. However, the nature of this inter-observer variability has not been explored. Namely, were the lesions that were consistently reported by the radiologists any different from the ones that yield disagreement? Furthermore, could these differences be quantitatively assessed? Moreover, were these differences in any way related with the experience level of the observer? In addition, the interpretation of perceived findings is closely related with the visual search strategy used to scan the breast tissue, because observers compare perceived findings with the background, in order to determine their uniqueness. Hence, what is the effect of visual search strategy on inter-observer variability? Can this effect be modeled using Artificial Neural Networks (ANNs)? Can inferences be made regarding the observers' decision patterns by analyzing the results of simulations run on the ANNs? The work described here aims at answering these questions. We will use spatial frequency analysis to characterize the areas on mammogram cases where mammographers, chest radiologists with experience reading mammograms and radiology residents at the end of their mammography rotation, indicate the presence of a finding, or fail to do so. We will assess inter-observer agreement, as well as intra- and inter-group agreement for the various groups of observers. In addition, we will train artificial neural networks to represent each observer, in such a way that by changing the nature of the features input to the ANNs we will be able to simulate how such changes would have affected the actual observer. We will assess the effects on inter-observer variability of changing the search strategy used by the observer to sample the breast tissue. In our setting, the inter-observer variability will be assessed by comparing the outputs of the ANNs that represent each observer. In addition, the changes in sampling strategy will correspond to actual possible strategies for the human observers themselves.
描述(由申请人提供): 乳房X线照片阅读中观察者的可变性已在文献中得到很好的证明。各种因素已用于解释这种变异性;其中,最重要的是与感知发现的管理有关。 但是,尚未探索这种观察者间变异性的性质。也就是说,放射科医生始终报告的病变与产生分歧的病变有什么不同吗?此外,可以定量评估这些差异吗?此外,这些差异是否与观察者的经验水平有关?此外,对感知发现的解释与用于扫描乳腺组织的视觉搜索策略密切相关,因为观察者将感知的发现与背景进行了比较,以确定其独特性。因此,视觉搜索策略对观察者间变异性有什么影响?可以使用人工神经网络(ANN)对此效果进行建模?可以通过分析对ANN上运行的模拟结果来对观察者的决策模式做出推论? 这里描述的工作旨在回答这些问题。我们将使用空间频率分析来表征乳房X光检查案例的区域,其中乳房X线摄影师,胸部放射科医生在乳房X线检查结束时具有阅读乳房X线照片和放射学居民的经验,表明存在发现或没有这样做。我们将评估各种观察者组的观察者间一致性以及组内和组间协议。此外,我们将训练人工神经网络以代表每个观察者,以使其通过将特征输入的性质更改为ANN,我们将能够模拟这种变化将如何影响实际观察者。我们将评估改变观察者对乳腺组织采样的搜索策略的影响的影响。在我们的环境中,观察者间的可变性将通过比较代表每个观察者的ANN的输出来评估。此外,抽样策略的变化将与人类观察者本身的实际可能策略相对应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CLAUDIA R MELLO-THOMS其他文献

CLAUDIA R MELLO-THOMS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CLAUDIA R MELLO-THOMS', 18)}}的其他基金

MammoTutor: An Internet-Based Computer Tutoring System to Teach General Radiol
MammoTutor:基于互联网的计算机辅助系统,用于教授一般放射学
  • 批准号:
    8259048
  • 财政年份:
    2009
  • 资助金额:
    $ 16.71万
  • 项目类别:
MammoTutor: An Internet-Based Computer Tutoring System to Teach General Radiol
MammoTutor:基于互联网的计算机辅助系统,用于教授一般放射学
  • 批准号:
    8072153
  • 财政年份:
    2009
  • 资助金额:
    $ 16.71万
  • 项目类别:
MammoTutor: An Internet-Based Computer Tutoring System to Teach General Radiol
MammoTutor:基于互联网的计算机辅助系统,用于教授一般放射学
  • 批准号:
    7937688
  • 财政年份:
    2009
  • 资助金额:
    $ 16.71万
  • 项目类别:
???MammoTutor: An Internet-Based Computer Tutoring System to Teach General Radiol
???MammoTutor:基于互联网的计算机辅助系统,教授一般放射学知识
  • 批准号:
    7784804
  • 财政年份:
    2009
  • 资助金额:
    $ 16.71万
  • 项目类别:
Perception and Inter-Observer Variability in Mammography
乳腺 X 线摄影的感知和观察者间差异
  • 批准号:
    6821032
  • 财政年份:
    2004
  • 资助金额:
    $ 16.71万
  • 项目类别:

相似国自然基金

基于生物医学谱学成像技术结合人工智能算法对心源性猝死鉴定的法医学研究
  • 批准号:
    82072115
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
生物医学光学成像
  • 批准号:
    81925022
  • 批准年份:
    2019
  • 资助金额:
    400 万元
  • 项目类别:
    国家杰出青年科学基金
结合超高速超声成像和磁声成像的超声-电导率成像新方法研究
  • 批准号:
    81871429
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
在体微循环代谢功能检测评估方法研究
  • 批准号:
    81871396
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
VHF脉冲热声成像技术研究
  • 批准号:
    61871083
  • 批准年份:
    2018
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAD in Breast MRI based on Biological Neural Network
基于生物神经网络的乳腺MRI CAD
  • 批准号:
    6875352
  • 财政年份:
    2005
  • 资助金额:
    $ 16.71万
  • 项目类别:
CAD in Breast MRI based on Biological Neural Network
基于生物神经网络的乳腺MRI CAD
  • 批准号:
    7123824
  • 财政年份:
    2005
  • 资助金额:
    $ 16.71万
  • 项目类别:
Perception and Inter-Observer Variability in Mammography
乳腺 X 线摄影的感知和观察者间差异
  • 批准号:
    6821032
  • 财政年份:
    2004
  • 资助金额:
    $ 16.71万
  • 项目类别:
Digital Mammography: Advanced Computer-Aided Breast Can*
数字乳房X光检查:先进的计算机辅助乳房检查*
  • 批准号:
    6753540
  • 财政年份:
    2003
  • 资助金额:
    $ 16.71万
  • 项目类别:
Digital Mammography: Advanced Computer-Aided Breast Can*
数字乳房X光检查:先进的计算机辅助乳房检查*
  • 批准号:
    7088818
  • 财政年份:
    2003
  • 资助金额:
    $ 16.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了