The mathematics of generalised dualities in M-theory

M 理论中广义对偶性的数学

基本信息

  • 批准号:
    2602430
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Whilst many mysteries remain about M-theory, the leading candidate for the quantum resolution of Einstein's general relativity, its most provocative features are U-dualities. Dualities are deep relationships and equivalences between seemingly distinct systems. Our central motivation is to illuminate the richness of dualities by exposing their mathematical structures. Goals1. Develop a refined understanding of quantum aspects of generalised T-dualities in string theory employing the mathematical tools of geometric and/or deformation quantisation2. Provide a mathematical underpinning of novel Exceptional Drinfel'd Algebras (EDAs) postulated to described generalised dualities of M-theory.3. Exploit the relation between Poisson-Lie dualities and Quantum Groups to give a quantum perspective on string dualities 4. Develop a linkage between the generalised Yang-Baxter equations that arise in EDAs and theory of integrable modelsThis work fits in a number of research areas within the Mathematical Science theme of EPSRC. In particular progress will be relevant to Mathematical Physics (through the potential applications to the mathematical structures sitting behind the dualities of string theory and through the relationships to integrable models), Geometry and Topology (through the development of generalised parallelisations with Hitchin's generalised geometry and its extensions, including non-commutative geometry), Algebra (through understanding the quantum algebras related to the classical exceptional Drinfel'd algebra and algebraic structures related to the Yang-Baxter equation)
尽管关于爱因斯坦广义相对论量子分辨率的主要候选者--M理论仍有许多谜团,但它最具挑衅性的特征是U-二元性。二元性是看似截然不同的系统之间的深层关系和等价物。我们的中心动机是通过揭示二元性的数学结构来阐明它们的丰富性。进球1。利用几何和/或形变量化的数学工具,发展对弦理论中广义T-对偶的量子方面的精细理解2。为描述广义M-理论的特殊Drinfel‘d代数(EDAS)提供了一个数学基础。利用泊松-李对偶和量子群之间的关系,给出弦对偶的量子观点4.发展在EDAS中产生的广义杨-巴克斯特方程和可积模型理论之间的联系这项工作适合于EPSRC数学科学主题的一些研究领域。特别是数学物理(通过对弦理论对偶背后的数学结构的潜在应用,以及通过与可积模型的关系),几何和拓扑学(通过发展与希钦的广义几何及其推广,包括非交换几何),代数(通过了解与经典的例外Drinfel‘d代数有关的量子代数和与杨-巴克斯特方程有关的代数结构)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Generalised Context Privacy
广义上下文隐私
  • 批准号:
    EP/X040038/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
  • 批准号:
    EP/X024555/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Understanding cognitive and behavioural mechanisms of Generalised Anxiety Disorder in adolescents
了解青少年广泛性焦虑症的认知和行为机制
  • 批准号:
    2891560
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Generalised Photocatalysis by Enzymes (GENPENZ)
广义酶光催化 (GENPENZ)
  • 批准号:
    BB/X003027/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Using the body to calm the mind: An examination of heart rate variability biofeedback as a tool to reduce generalised anxiety disorder symptoms
用身体平静心灵:心率变异性生物反馈检查作为减少广泛性焦虑症症状的工具
  • 批准号:
    MR/W005077/2
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
  • 批准号:
    EP/W007371/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Generalised Hörmander-Rellich-Pohozhaev-Morawetz identities and their applications in spectral geometry
广义 Hörmander-Rellich-Pohozhaev-Morawetz 恒等式及其在谱几何中的应用
  • 批准号:
    EP/W006898/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Generalised method for determining IO equations of four bar kinematic chains of arbitrary architecture: planar, spherical, spatial
确定任意结构(平面、球形、空间)的四杆运动链 IO 方程的通用方法
  • 批准号:
    546523-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了