Normal and Pathologic Functions of DNA-binding shared by
DNA 结合的正常和病理功能
基本信息
- 批准号:6986966
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:DNA binding proteinDNA methylationbiotechnologybrain neoplasmsbreast neoplasmschromatin immunoprecipitationgene mutationgenetic promoter elementgenetic regulationgenomic imprintinglung neoplasmsmatrix assisted laser desorption ionizationneoplasm /cancer geneticsnucleic acid sequenceprostate neoplasmsprotooncogenetissue /cell culturetranscription factortumor suppressor genes
项目摘要
From 10-01-03 to 9-01-04, we continued our efforts on a genome wide characterization of various functions mediated in chromatin of normal and cancer cells by the 50-bp-long DNA sequences capable of specific binding to the highly conserved 11 Zinc Finger (11ZF) DNA-binding domain (DBD) shared in two unique nuclear factors, CTCF and BORIS. CTCF is highly conserved, multifunctional, multivalent, nuclear factor with the properties of a tumor suppressor at 16q22. It is ubiquitously expressed in all somatic cells, and involved in promoter activation and repression, hormone-inducible gene silencing, and creation of constitutive or methylation-sensitive chromatin boundaries. An exciting breakthrough in understanding the epigenetic mechanisms was our discovery of a paralogue of CTCF termed BORIS (for Brother Of Regulator of Imprinted Sites). Normally, only CTCF but not BORIS is expressed in all somatic cells. During male germ cell differentiation, the pair displays mutually exclusive expression pattern that correlates with the patterns for (1) genome-wide re-establishing of DNA-methylation marks and (2) certain testis-specific chromatin-remodeling factors, and DNMTs. BORIS is normally expressed only during MALE-germ-cell differentiation, in a mutually exclusive with CTCF pattern that is tightly coupled with epigenetic reprogramming. We showed earlier that CTCF and BORIS share identical exons encoding the 11 ZF DBD to interact with the same spectrum of CTCF/BORIS-binding sites, but diverge at the amino- and carboxy-termini. Both genes have originally been identified and molecularly cloned by V. Lobanenkov with collaborators and co-workers, who first submitted to GenBank the full-length cDNA sequences of CTCF in April 1993 (Acc. No. Z22605) and of BORIS in January 2001 (Acc. No. AF336042). Any later submissions of BORIS cDNA and/or protein sequences under ?CTCF-L? name and other accession numbers (for an EST, or a hypothetical ?CTCF-like? protein) are incorrect and misleading, because there is ABSOLUTELY NO SIMILARITIES between CTCF and BORIS amino acid sequences in the 11ZF-flanking N-terminal and C-terminal parts that account for the two-thirds of each polypeptide of similar total length, thereby making BORIS to be a factor, which UNLIKE CTCF can direct a totally distinct from CTCF function to a shared set of target DNA-sequences recognized by the 11ZF-domain. By 9-01-04, two reviews on CTCF and BORIS genes, written by V. Lobanenkov and co-workers, are available: 1] CTCF Is a Uniquely Versatile Transcription Regulator Linked to Epigenetics and Disease. Trends Genet. 17: 520-527; and 2] The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Seminars in Cancer Biol. 49: 1-16. Thus, somatic CTCF and testis-specific BORIS could serve as counteracting genes by manifesting and reprogramming PATERNAL epigenetic states, respectively, by DNA-sequences binding to the 11 ZF DBD shared by the two already-published genes CTCF and BORIS. The sites for MATERNAL epigenetic marking require a third factor with the same DBD to be expressed in embryonic ovaries. Indeed, we discovered a FEMALE-germ-cell-specific counterpart of BORIS, named "Natasha" to highlight the difference both with the MALE-germ-cell-specific BORIS and with somatic CTCF. This year, we have proven the stunning presence in the ORF of the partial Natasha cDNA clones of the same 11ZF DBD that was earlier described in the unique CTCF & BORIS PAIR. While additional cDNA sequences of NATASHA mRNA, was added this year by Dr. E. Pugacheva before her departure from the US in May 17th, obtaining of the full-length cDNA will await her return to the LIP by October 1st. Identification of Natasha has completed our search of all three factors required for the re-erstablishing and redaing of parental epigenetic marks at chromatin regions with DNA-sequences recognized by the the same 11ZF DBD shared by thhhhese three unique factors. We called such sequences CTCF/BORIS/NATASHASHA-target sites, or "CBN-sites". Our working hypothesis suggests that regulation of the in vivo access to CBN-sites, and functionally different outcomes from the in vivo occupancy of the same genomic sites by competing against each other distinct factors equipped with the same 11ZF-DBD, may serve to target, to maintain, or to alter local status of epigenetic modifications genome wide in immortalized/transformed cells. Indeed, unlike normal somatic cells with CTCF, the vast majority of cancer cells are found to abnormally co-express CTCF and BORIS together (S. Pack et.al., submitted; and see the above refs for a review). In accord with this hypothesis, several studies of the IGF2/H19 LOI by altering mono-allelic CTCF-binding in tumors with aberrant bi-allelic hypo- and/or hyper- methylation of at least one of seven CTCF-sites in the H19 ICR, suggested that CTCF-binding sequences, or CBN sites, are taking the central stage in human cancer epigenetics [Feinberg, A. PNAS 2001, 98: 392-4]. In some human families, Mother Nature herself performed some of the most revealing experiments on the role of CBN-sites, for example, by showing that a narrow deletion of only two CTCF-binding ICR sites in two different families (or abnormal bi-allelic methylation of the same sites in several other families) results in the Beckwith-Wiedemann syndrome (BWS) including prenatal death on maternal transmission with the signs of BWS [A. Sparago et. al., Nat. Genet., 2004]. Various CBN 11ZF-DBD-targets can incorporate additional binding sites for other (lineage-specific) transcriptional factors, because formation of various 11ZF/DNA-complexes generates 50-60-bp-long footprints with different contexts of ZF-contacting nucleotides on both DNA strands of a CBN site (see the above reviews for details), which explains how CTCF and BORIS are capable of discriminating functionally distinct targets, form so many distinct geometry complexes with DNA, and result in a SELECTIVE interactions of the complexes one with another [Pant V, et.al. Mol Cell Biol. 2004, 24: 3497-504]. The ability of CTCF and BORIS to discriminate in vivo functionally distinct targets suggested that the functional outcomes from changing a particular mode of the in vivo occupancy at the 11ZF-DBD-binding sites can differ and be cell-type-specific. Indeed, for example, an ectopic tet- expression of BORIS (but not the 11ZF-DBD alone) in primary normal human fibroblasts results in the selective demethylation and re-activation of the CBN target promoters normally regulated by the CTCF-BORIS-switching in germ cells. Such targets include promoters of so called ?cancer-testis? genes, such as MAGEs, LAGEs, NY-ISO-1 and other downstream BORIS-targets like the Oct-4 promoter, for which the change of the in vivo occupancy at CTCF/BORIS-sites initially mapped by gel-shifts, was directly shown by the ChIP approach (Vatolin S., et.al., in preparation). On the other hand, an ongoing mapping and verifying each novel site for methylation-sensitive binding in vivo, strongly supports an idea that misdirected epigenetic regulation in tumors is mediated through a misuse of varying sequences recognized by the CBN 1ZF DBD, because no exceptions have been yet found for the presence of such sequences in promoters reported in the literature for aberrant hypermethylation, with near 100 of such regions tested, and CBN-sites arrayed for ChIP-to-chip assays (Pugacheva e.a., in prep.). Finally, we showed that Natasha-BORIS-genes are located within the region on 20q13 commonly involved in copy-gain in breast, ovarian, brain and many other cancers, and in fact are abnormally activated in those tumors, thereby making these factors an exceptionally attractive new anti-cancer target and a super-sensitive early diagnostic tool, patented on 09/21 as "METHOD OF DETECTING CANCER BASED ON IMMUNE REACTION TO BORIS"
从03年10月1日到04年9月1日,我们继续研究了正常细胞和癌细胞染色质中各种功能的全基因组特征,这些功能是通过50 bp长的DNA序列特异性结合两个独特的核因子CTCF和BORIS共享的高度保守的11锌指(11ZF) DNA结合域(DBD)来实现的。CTCF是一种高度保守、多功能、多价的核因子,在16q22位点具有肿瘤抑制因子的特性。它在所有体细胞中普遍表达,参与启动子的激活和抑制,激素诱导的基因沉默,以及构成或甲基化敏感染色质边界的创造。在理解表观遗传机制方面的一个令人兴奋的突破是我们发现了一个被称为BORIS(印迹位点调控因子的兄弟)的CTCF对偶。正常情况下,所有体细胞只表达CTCF,不表达BORIS。在男性生殖细胞分化过程中,这对基因表现出互斥的表达模式,这种表达模式与(1)dna甲基化标记的全基因组重建和(2)某些睾丸特异性染色质重塑因子和dnmt的模式相关。BORIS通常仅在男性生殖细胞分化过程中表达,与CTCF模式相互排斥,并与表观遗传重编程紧密结合。我们之前发现CTCF和BORIS具有相同的外显子编码11 ZF DBD,与CTCF/BORIS结合位点的相同谱相互作用,但在氨基端和羧基端存在差异。这两个基因最初是由V. Lobanenkov及其同事鉴定和分子克隆的,他们于1993年4月首次向GenBank提交了CTCF的全长cDNA序列(Acc。不。Z22605)和BORIS的2001年1月(Acc。不。AF336042)。在CTCF-L下提交的BORIS cDNA和/或蛋白序列名称和其他加入号(用于EST,或假设的?CTCF-like?)(蛋白质)是不正确的和误导性的,因为在11zf -侧翼n端和c端部分的氨基酸序列中,CTCF和BORIS之间绝对没有相似性,这些部分占每个相似总长度多肽的三分之二,从而使BORIS成为一个因子,而不像CTCF可以将完全不同于CTCF的功能引导到11zf -结构域识别的一组共享的目标dna序列。截至2004年9月1日,由V. Lobanenkov及其同事撰写的两篇关于CTCF和BORIS基因的综述已经发表:1]CTCF是一种与表观遗传和疾病相关的独特的通用转录调控因子。趋势科学,17 (2):527 -527;[2]新的BORIS+CTCF基因家族在正常生物学和癌症的表观遗传学中具有独特的作用。中华肿瘤杂志。49:1-16。因此,体细胞CTCF和睾丸特异性BORIS可以作为对抗基因,通过dna序列结合到两个已发表的基因CTCF和BORIS共有的11 ZF DBD上,分别表现和重编程PATERNAL表观遗传状态。母体表观遗传标记位点需要具有相同DBD的第三个因子在胚胎卵巢中表达。事实上,我们发现了BORIS的女性生殖细胞特异性对应物,命名为“Natasha”,以突出与男性生殖细胞特异性BORIS和体细胞CTCF的差异。今年,我们已经证明了在ORF中存在与先前在独特的CTCF和BORIS配对中描述的相同的11ZF DBD的部分Natasha cDNA克隆。虽然今年5月17日,E. Pugacheva博士在她离开美国之前添加了额外的NATASHA mRNA cDNA序列,但要等到10月1日她回到LIP后才能获得全长cDNA。娜塔莎的鉴定完成了我们在染色质区域重新建立和读取亲本表观遗传标记所需的所有三个因素的搜索,这些dna序列被这三个独特因素所共享的11ZF DBD所识别。我们称这些序列为CTCF/BORIS/ natasha -target sites,或CBN-sites。我们的工作假设表明,体内进入cbn位点的调控,以及通过与具有相同11ZF-DBD的不同因子相互竞争而在体内占用相同基因组位点的功能不同结果,可能有助于靶向、维持或改变永生化/转化细胞中全基因组表观遗传修饰的局部状态。事实上,与具有CTCF的正常体细胞不同,绝大多数癌细胞被发现异常地同时表达CTCF和BORIS (S. Pack等)。,提交;并参阅上述参考文献进行审查)。与这一假设一致,一些研究通过改变IGF2/H19 LOI在H19 ICR中七个ctcf位点中至少一个的双等位基因低甲基化和/或高甲基化的肿瘤中的单等位基因ctcf结合,表明ctcf结合序列或CBN位点在人类癌症表观遗传学中处于中心地位[Feinberg, A. PNAS 2001, 98: 394 -4]。在一些人类家庭中,大自然母亲亲自进行了一些关于cbn位点作用的最具揭示性的实验,例如,通过显示两个不同家庭中仅两个ctcf结合ICR位点的狭窄缺失(或其他几个家庭中相同位点的异常双等位基因甲基化)导致贝克威斯-维德曼综合征(BWS),包括孕妇传播的产前死亡,并伴有BWS的迹象[a]。斯帕戈等人,纳特·热内。, 2004]。各种CBN 11ZF- dbd靶标可以结合其他(特异性)转录因子的额外结合位点,因为各种11ZF/DNA复合物的形成在CBN位点的两个DNA链上产生50-60-bp长的足迹,具有不同背景的zf -接触核苷酸(详见上述评论),这解释了CTCF和BORIS如何能够区分功能不同的靶标,与DNA形成如此多不同的几何复合物。并导致一个复合物与另一个复合物的选择性相互作用[潘特V,等]。中国生物医学工程学报,2004,24(4):357 - 357。CTCF和BORIS在体内区分不同功能靶点的能力表明,改变11zf - dbd结合位点在体内占用的特定模式可能会产生不同的功能结果,并且具有细胞类型特异性。事实上,例如,BORIS的异位tet-表达(而不是11ZF-DBD)在原代正常人类成纤维细胞中导致CBN靶启动子的选择性去甲基化和再激活,通常由生殖细胞中ctcf -BORIS开关调节。这些目标包括所谓的“癌睾丸”的启动子。基因,如mage、LAGEs、NY-ISO-1和其他下游boris靶点如Oct-4启动子,其体内CTCF/ boris位点的占据变化最初是通过凝胶位移绘制的,通过ChIP方法直接显示(Vatolin S.,等)。(准备中)。另一方面,正在进行的对体内甲基化敏感结合的每个新位点的定位和验证,有力地支持了一种观点,即肿瘤中错误的表观遗传调控是通过滥用CBN 1ZF DBD识别的不同序列来介导的,因为在文献中报道的异常高甲基化启动子中没有发现这种序列的例外,测试了近100个这样的区域。和cbn位点排列用于芯片对芯片分析(Pugacheva等人,在准备中)。最后,我们发现natasha -BORIS基因位于20q13上通常与乳腺癌、卵巢癌、脑癌和许多其他癌症的复制获得有关的区域内,实际上在这些肿瘤中被异常激活,从而使这些因子成为一个非常有吸引力的新的抗癌靶点和超敏感的早期诊断工具,并于9月21日获得专利,名为“基于BORIS免疫反应的癌症检测方法”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICTOR LOBANENKOV其他文献
VICTOR LOBANENKOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICTOR LOBANENKOV', 18)}}的其他基金
Normal and Pathologic Functions of CTCF and Its Distinct Classes of DNA-targets
CTCF 的正常和病理功能及其不同类型的 DNA 靶标
- 批准号:
7732551 - 财政年份:
- 资助金额:
-- - 项目类别:
Role Of Boris/ctcf-pairing In Development, Gene-imprinti
Boris/ctcf 配对在发育、基因印记中的作用
- 批准号:
6669830 - 财政年份:
- 资助金额:
-- - 项目类别:
Normal and Pathologic Functions of CTCF and Its Distinct Classes of DNA-targets
CTCF 的正常和病理功能及其不同类型的 DNA 靶标
- 批准号:
7592248 - 财政年份:
- 资助金额:
-- - 项目类别:
DNA-binding shared by CTCF, BORIS, NATASHA
CTCF、BORIS、NATASHA 共享 DNA 结合
- 批准号:
7196660 - 财政年份:
- 资助金额:
-- - 项目类别:
Transcriptional Regulation Of Ctcf And Boris Expression
Ctcf 和 Boris 表达的转录调控
- 批准号:
6674068 - 财政年份:
- 资助金额:
-- - 项目类别:
Role Of Boris/ctcf-pairing In Development, Gene-imprinti
Boris/ctcf 配对在发育、基因印记中的作用
- 批准号:
6809087 - 财政年份:
- 资助金额:
-- - 项目类别:
ROLE OF TRANSCRIPTION FACTOR CTCF IN TUMOR DEVELOPMENT
转录因子 CTCF 在肿瘤发展中的作用
- 批准号:
6414432 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Inhibition of DNA methylation to prevent tumor-induced immune tolerance
抑制DNA甲基化以防止肿瘤诱导的免疫耐受
- 批准号:
8091764 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Inhibition of DNA methylation to prevent tumor-induced immune tolerance
抑制DNA甲基化以防止肿瘤诱导的免疫耐受
- 批准号:
8446400 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Inhibition of DNA methylation to prevent tumor-induced immune tolerance
抑制DNA甲基化以防止肿瘤诱导的免疫耐受
- 批准号:
8260490 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Lung Cancer Diagnosis Using DNA Methylation Signatures
使用 DNA 甲基化特征诊断肺癌
- 批准号:
6674537 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Lung Cancer Diagnosis Using DNA Methylation Signatures
使用 DNA 甲基化特征诊断肺癌
- 批准号:
6790639 - 财政年份:2003
- 资助金额:
-- - 项目类别: