Genetic Analysis of the Multidrug Resistance Phenotype i
多药耐药表型的遗传分析 i
基本信息
- 批准号:7038591
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:P glycoproteinbiological transportcell linecisplatincytoskeletondrug delivery systemsdrug metabolismdrug receptorsendocytosisgene expressiongene therapygenetic markersgreen fluorescent proteinsintracellular transportmethylationmicroarray technologymultidrug resistanceneoplasm /cancer chemotherapyneoplastic cellphenotypepolymerase chain reactionprotein transporttransfection /expression vector
项目摘要
Resistance to chemotherapy occurs in cancer cells because of intrinsic or acquired changes in expression of specific proteins. We have studied resistance to natural product chemotherapeutic agents such as doxorubicin, Vinca alkaloids, and taxol, and to the synthetic drug cisplatin. In both cases, cells become simultaneously resistant to multiple drugs because of reductions in intracellular drug concentrations. For the natural product drugs this cross-resistance is frequently due to expression of an energy-dependent drug efflux system (ABC transporter) known as P-glycoprotein (P-gp), the product of the MDR1 or ABCB1 gene or other members of the ABC transporter family. For cisplatin, cross-resistance to methotrexate, some nucleoside analogs, heavy metals, and toxins is due to a reduction in drug influx resulting from a pleiotropic defect in uptake systems. Recent evidence suggests a global defect in endocytosis in these cisplatin resistant cells and defects in intracellular protein trafficking and the cytoskeleton. Single-step cisplatin resistant mutants show a defect in protein trafficking which results in accumulation of cell surface receptors/transporters/channels in the cytoplasm; a putative cisplatin carrier/channel is presumed to be among these mislocalized proteins resulting in decreased cisplatin uptake. At higher levels of resistance, after multiple steps of selection in cisplatin, there is increased methylation of genes for binding proteins (e.g., folate binding protein) and cytoskeletal proteins, among others. This hypermethylation, reversible by treatment with deoxyazacytidine, results in decreased RNA transcription of genes responsible, at least in part, for the cisplatin resistance phenotype. Studies on the normal function of P-gp suggest that it is involved in normal uptake and distribution of many drugs. We have developed a tet-repressible P-gp cell line and demonstrated that although reduced drug accumulation is a direct consequence of P-gp expression, many other phenotypes frequently attributed to P-gp expression, including altered membrane fluidity and membrane potential, are not due directly to P-gp. Common polymorphic variants of P-gp have been detected, but coding polymorphisms do not appear to alter the drug transport functions of P-gp. However, a synonymous polymorphism (no amino acid change) in the setting of a specific P-gp haplotype can affect efficiency of P-gp pumping for reasons still under investigation. To explore the possibility that other members of the ABC family of transporters may be involved in drug resistance in cancer, we have developed real-time PCR and microarray technology for detection of most of the 48 known ABC transporters; these techniques have been used to correlate expression of novel ABC transporters in cancer cell lines of known drug resistance. Expression of approximately 30 ABC transporters has been shown to correlate with resistance to specific cytotoxic drugs. Furthermore, some drugs are more toxic to P-gp expressing cells than to non-expressors, suggesting a novel approach to treatment of MDR cancers. In addition, an ABC ToxChip has been created in collaboration with the NIEHS microarray center and used to analyze various cell lines selected for MDR. New resistance phenotypes associated with expression of ABCB6, ABCA12 and ABCC2 have been identified with this chip. We have also found a unique signature of ABC transporters in melanoma cells. One of these transporters, ABCB5, is closely related to P-gp (MDR1) and may contribute to MDR in melanoma cells. Use of the MDR1 gene as a dominant selectable marker in gene therapy has focused on the development of SV40 as a vector for delivery of MDR1. Using recombinant SV40 capsid proteins, it is possible to package DNA in vitro, including P-gp and green fluorescent protein (GFP) containing vectors. Transduction of P-gp and GFP using in vitro-packaged DNA is highly efficient in many different cell types including lymphoid cells, liver cells, and keratinocytes, and in vivo allows transfer of up to 15 kb of DNA without the need for SV40 sequences in the packaged DNA. This approach offers promise for transfer of P-gp into hematopoietic and other cells for gene therapy.
化疗耐药发生在癌细胞中,是因为特定蛋白质表达的内在或获得性变化。我们研究了对天然产物化疗药物的耐药性,如阿霉素、长春花生物碱和紫杉醇,以及对合成药物顺铂的耐药性。在这两种情况下,由于细胞内药物浓度降低,细胞同时对多种药物产生耐药性。对于天然产物药物,这种交叉耐药通常是由于被称为p -糖蛋白(P-gp)的能量依赖性药物外排系统(ABC转运蛋白)的表达,该转运蛋白是MDR1或ABCB1基因的产物或ABC转运蛋白家族的其他成员。对于顺铂,对甲氨蝶呤、一些核苷类似物、重金属和毒素的交叉耐药是由于摄取系统的多效性缺陷导致药物内流减少。最近的证据表明,这些顺铂耐药细胞的内吞作用和细胞内蛋白质运输和细胞骨架的缺陷存在全球性缺陷。单步顺铂耐药突变体显示蛋白质运输缺陷,导致细胞质中细胞表面受体/转运体/通道的积累;假定的顺铂载体/通道在这些错定位的蛋白质中,导致顺铂摄取减少。在耐药水平较高的情况下,经过顺铂的多个选择步骤后,结合蛋白(例如叶酸结合蛋白)和细胞骨架蛋白等基因的甲基化增加。这种高甲基化可通过脱氧氮胞苷治疗逆转,导致至少部分导致顺铂耐药表型的基因RNA转录降低。对P-gp正常功能的研究表明,它参与许多药物的正常摄取和分布。我们已经开发了一种可抑制P-gp的细胞系,并证明了尽管P-gp的表达直接导致了药物积累的减少,但许多其他通常归因于P-gp表达的表型,包括膜流动性和膜电位的改变,并不是由P-gp直接引起的。已经检测到P-gp的常见多态性变异,但编码多态性似乎不会改变P-gp的药物转运功能。然而,在特定P-gp单倍型的设置中,同义多态性(没有氨基酸变化)可能影响P-gp泵送效率,其原因仍在研究中。为了探索ABC转运蛋白家族的其他成员可能参与癌症耐药的可能性,我们开发了实时PCR和微阵列技术,用于检测已知的48种ABC转运蛋白中的大多数;这些技术已被用于在已知耐药的癌细胞系中关联新的ABC转运蛋白的表达。大约30种ABC转运蛋白的表达与对特定细胞毒性药物的耐药性有关。此外,一些药物对表达P-gp的细胞比不表达P-gp的细胞毒性更大,这提示了一种治疗耐多药癌症的新方法。此外,ABC ToxChip已与NIEHS微阵列中心合作创建,用于分析选择用于MDR的各种细胞系。该芯片已鉴定出与ABCB6、ABCA12和ABCC2表达相关的新抗性表型。我们还在黑色素瘤细胞中发现了ABC转运蛋白的独特特征。其中一种转运蛋白ABCB5与P-gp (MDR1)密切相关,可能与黑色素瘤细胞的MDR有关。在基因治疗中,将MDR1基因作为显性选择标记物的重点是将SV40作为MDR1的载体。利用重组SV40衣壳蛋白,可以在体外包装DNA,包括P-gp和含有绿色荧光蛋白(GFP)的载体。在体外包装的DNA中,P-gp和GFP的转导在许多不同的细胞类型中都是高效的,包括淋巴细胞、肝细胞和角化细胞,并且在体内可以转移多达15 kb的DNA,而不需要在包装的DNA中使用SV40序列。这种方法为将P-gp转移到造血细胞和其他细胞中进行基因治疗提供了希望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL M GOTTESMAN其他文献
MICHAEL M GOTTESMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL M GOTTESMAN', 18)}}的其他基金
GENETIC ANALYSIS OF THE MULTIDRUG RESISTANCE PHENOTYPE IN TUMOR CELLS
肿瘤细胞多药耐药表型的遗传分析
- 批准号:
6289127 - 财政年份:
- 资助金额:
-- - 项目类别:
Genetic Analysis of the Multidrug Resistance Phenotype in Tumor Cells
肿瘤细胞多药耐药表型的遗传分析
- 批准号:
7592539 - 财政年份:
- 资助金额:
-- - 项目类别:
Genetic Analysis of the Multidrug Resistance Phenotype in Tumor Cells
肿瘤细胞多药耐药表型的遗传分析
- 批准号:
6433042 - 财政年份:
- 资助金额:
-- - 项目类别:
Genetic Analysis of the Multidrug Resistance Phenotype in Tumor Cells
肿瘤细胞多药耐药表型的遗传分析
- 批准号:
7732888 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Biophysics of biological transport and signaling "nanomachines": from theory to applications
生物运输和信号传导“纳米机器”的生物物理学:从理论到应用
- 批准号:
RGPIN-2022-04909 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigation on water mass and biological transport in the Antarctic coastal areas through the oceanographic survey by penguins
通过企鹅海洋学调查研究南极沿海地区的水团和生物运输
- 批准号:
22H03737 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding mechanisms of biological transport and signaling for nanotechnology applications.
了解纳米技术应用的生物运输和信号传导机制。
- 批准号:
RGPIN-2016-06591 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding the mechanisms of biological transport and signaling for nanotechnology applications
了解纳米技术应用的生物运输和信号传导机制
- 批准号:
402591-2011 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding the mechanisms of biological transport and signaling for nanotechnology applications
了解纳米技术应用的生物运输和信号传导机制
- 批准号:
402591-2011 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




