Deductive Verification for Stochastic Hybrid Systems

随机混合系统的演绎验证

基本信息

  • 批准号:
    2605387
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Modelling of uncertainty is an important part of the development of demonstrably safe autonomous systems. There are several sources of uncertainty including the environment with unpredictable actors; actuation and perception, whose effects cannot be exactly quantified; and the use of probabilistic algorithms to sample and analyse input data (e.g. machine learning). Whilst nondeterminism and continuous dynamics allow us to achieve models of a somewhat high fidelity, without a means to model uncertainty probabilistically an inevitable reality gap remains. Self-aware and self-managing systems, in particular, need semantics that can handle these probabilistic aspects. However, the introduction of probability further enlarges the state space, and leads to formal verification being a less tractable problem. Whilst probabilistic model checking has seen great success recently, for stochastic hybrid systems the state explosion problem motivates the need for symbolic reasoning techniques.Deductive verification provides strong guarantees of a system's vital properties, due to its ability to handle a very large or infinite state space. This technique has successful applications for hybrid systems: a state-of-theart example is the KeYmaera X tool [2], which implements a deductive logic for verifying hybrid dynamical systems called differential dynamic logic. KeYmaera X has been successfully applied to verification of collision avoidance algorithms for autonomous and mobile robots. There is also a differential dynamic logic implementation in Isabelle/UTP [1], a verification ecosystem for Isabelle/HOL based on Unifying Theories of Programming. This implementation has the advantage of being more readily applicable to software assurance and certification, as Isabelle/HOL is a general theorem prover with facilities for code generation, which has been applied to large-scale software verification projects.Whilst there are prototype logics for reasoning about stochastic models, such as stochastic differential dynamic logic [3], these remain unimplemented and thus unvalidated. In addition, robot models are not generally stochastic and further investigation into modelling techniques is needed. The aim of this project is to develop a verification calculus for stochastic models and an associated tool for stochastic hybrid programs in Isabelle/UTP. This could be done by extending the differential dynamic logic implementation in Isabelle/UTP to handle stochastic differential equations and random variables, which would enable the modelling of both sensor and actuator uncertainty.The development would involve the verification of real robot controllers, which would implement behaviours using Bayesian inference methods and represent data as random variables to formalize the assumptions they make. This would both improve the confidence in the tool and yield example applications for future users. Harnessing Isabelle's code generation facilities, we will provide a method that synthesizes these behaviours into Bayesian models and provides traceability through semantic tagging from a high-level stochastic model, down to actual code for use in a simulation or physical robot platform. The use of Bayesian inference and probabilistic models is a novel application with respect to verification models that will improve the performance of real robots with uncertain data sources while ensuring explainability. We will use the York Robotics laboratory facilities and its large store of mobile robots with high-quality sensors for validation.
不确定性建模是开发可证明安全的自主系统的重要组成部分。不确定性有几个来源,包括具有不可预测行为者的环境;驱动和感知,其影响无法准确量化;以及使用概率算法对输入数据进行采样和分析(例如机器学习)。虽然非决定论和连续动态允许我们实现某种程度上高保真的模型,但如果没有一种方法来对不确定性进行概率建模,则不可避免的现实差距仍然存在。自我感知和自我管理的系统,特别需要能够处理这些概率方面的语义。然而,概率的引入进一步扩大了状态空间,并导致形式验证成为一个不太容易处理的问题。虽然概率模型检测最近取得了巨大的成功,随机混合系统的状态爆炸问题的动机需要符号推理techniques.演绎验证提供了强有力的保证系统的重要属性,由于其能够处理一个非常大的或无限的状态空间。这种技术在混合系统中有成功的应用:最先进的例子是KeYmaera X工具[2],它实现了一种用于验证混合动态系统的演绎逻辑,称为微分动态逻辑。KeYmaera X已成功应用于验证自主和移动的机器人的避碰算法。Isabelle/UTP [1]中还有一个差分动态逻辑实现,这是一个基于统一编程理论的Isabelle/HOL验证生态系统。这种实现的优点是更容易适用于软件保证和认证,因为Isabelle/HOL是一个通用的定理证明器,具有代码生成功能,已应用于大规模的软件验证项目。虽然有用于推理随机模型的原型逻辑,例如随机微分动态逻辑[3],但这些逻辑仍然没有实现,因此没有验证。此外,机器人模型通常不是随机的,需要进一步研究建模技术。这个项目的目的是开发一个验证演算的随机模型和随机混合程序在Isabelle/UTP的相关工具。这可以通过扩展Isabelle/UTP中的微分动态逻辑实现来实现,以处理随机微分方程和随机变量,这将使传感器和致动器的不确定性建模成为可能。开发将涉及真实的机器人控制器的验证,该控制器将使用贝叶斯推理方法实现行为,并将数据表示为随机变量,以形式化它们所做的假设。这将提高对工具的信心,并为未来的用户提供示例应用程序。利用Isabelle的代码生成工具,我们将提供一种方法,将这些行为合成到贝叶斯模型中,并通过从高级随机模型到实际代码的语义标记提供可追溯性,以用于模拟或物理机器人平台。贝叶斯推理和概率模型的使用是验证模型方面的一个新的应用,它将提高具有不确定数据源的真实的机器人的性能,同时确保可解释性。我们将使用约克机器人实验室的设施和它的大商店的移动的机器人与高质量的传感器进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Trust Matrix: A blockchain-driven system for business identity verification, increasing business efficiency and reducing fraud.
Trust Matrix:区块链驱动的企业身份验证系统,可提高业务效率并减少欺诈。
  • 批准号:
    10099958
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
AF: Small: Verification Complexities of Self-Assembly Systems
AF:小:自组装系统的验证复杂性
  • 批准号:
    2329918
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
  • 批准号:
    24K20735
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了