A Simple Approach to Parameter Inference in State-Space Models
状态空间模型中参数推断的简单方法
基本信息
- 批准号:2610815
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Abstract(no more than 4,000 characters including spaces, clearly explain which EPSRC research area the project relates to - for more info see overleaf) State-space models are popular tools in many areas of science, including economics, biology or ecology, and are mainly used to predict an unobserved (or latent) time series of interest from the available data. For instance, in economics we are often interested in inferring the risk of an asset from its price, while in ecology one may want to use some observations to estimate the evolution of the population size of a given group of animals. As in any statistical models, state-space models depend on parameters that need to be learnt from the data. Parameter inference in this class of models is however known to be challenging, because computing the associated log-likelihood function, or its gradient, requires to integrate out the latent variables, a task which is usually intractable. Particle filter algorithms have proven to be powerful Monte Carlo techniques for estimating expectations with respect to the unobserved variables, and state-of the art methods for parameter inference in state-space models amount to using these Monte Carlo estimates within "standard" algorithms (such as the Metropolis-Hastings algorithm for Bayesian inference, or the gradient ascent algorithm for maximum likelihood estimation). Despite the undeniable usefulness of these approaches, they are typically difficult to implement and to tune for non-experts in Monte Carlo methods, in addition to be computationally expensive even for moderate sample sizes. Consequently, in practice, simpler but theoretically unjustified algorithms are often preferred to learn the model parameter from the data. The most popular of these simpler approaches is probably the one proposed 20 years ago by Liu and West (2001), in which the unknown model parameter is simply treated as an additional latent variable. If this strategy has the merit to be simple to implement it however has the drawback of not being supported by any theoretical results. Following the idea of Liu and West (2001), the objective of this research is to propose a theoretically justified way of treating the parameter of a state-space model as a latent variable in order to learn its value. To achieve this goal this research will build on the approach developed by Gerber and Douc (2021) for parameter estimation in static models, and leverage results on the concentration properties of the Bayesian posterior distributions that arise in partially observed Markov models (see Douc et al., 2020). By providing an easy to implement but theoretically justified approach to parameter inference in the widely used class of state-space models, the research will benefit to a broad range of researchers and practitioners whose scientific conclusions and predictions rely on these models. This project falls within the EPSRC Statistics and Applied Probability research area.
摘要(包括空间在内的不超过4,000个字符,清楚地说明该项目相关的EPSRC研究领域 - 有关更多信息,请参见Overleaf)州空间模型是许多科学领域的流行工具,包括经济学,生物学或生态学,主要用于预测可用数据中未观察到的(或潜在的)时间序列。例如,在经济学中,我们通常有兴趣从其价格中推断出资产的风险,而在生态学中,人们可能希望使用一些观察结果来估计给定动物群体的种群规模的演变。与任何统计模型一样,状态空间模型取决于需要从数据中学到的参数。然而,该类别模型中的参数推断是具有挑战性的,因为计算相关的对数可能性函数或其梯度需要集成潜在变量,这是一个通常是棘手的任务。 Particle filter algorithms have proven to be powerful Monte Carlo techniques for estimating expectations with respect to the unobserved variables, and state-of the art methods for parameter inference in state-space models amount to using these Monte Carlo estimates within "standard" algorithms (such as the Metropolis-Hastings algorithm for Bayesian inference, or the gradient ascent algorithm for maximum likelihood estimation).尽管这些方法具有不可否认的有用性,但它们通常很难实现,并且对于蒙特卡洛方法中的非专家来说,除了计算中,即使对于中等样本量,它们也很昂贵。因此,在实践中,通常首选简单但理论上不合理的算法从数据中学习模型参数。这些简单的方法中最流行的方法可能是20年前Liu and West(2001)提出的一种方法,其中未知的模型参数只是将其视为附加的潜在变量。如果此策略的优点是易于实施的,但是没有任何理论结果支持的缺点。遵循Liu and West(2001)的想法,这项研究的目的是提出一种理论上合理的方式,将状态空间模型的参数视为潜在变量,以了解其价值。为了实现这一目标,这项研究将基于Gerber和Douc(2021)在静态模型中开发的方法,并利用部分观察到的Markov模型中出现的贝叶斯后分布的浓度属性的结果(参见Douc等,2020)。通过在广泛使用的一类国家空间模型中提供易于实施但理论上有理的参数推断方法,该研究将受益于广泛的研究人员和从业人员,他们的科学结论和预测依赖于这些模型。 该项目属于EPSRC统计数据和应用概率研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
无监督表征优化的广域范围滑坡敏感性精准分析方法
- 批准号:42301479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于虚拟合成波长的光纤分布式声波传感动态范围扩展机理与方法
- 批准号:62305177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽频范围运行多自由度MMC电容电压纹波主动抑制方法研究
- 批准号:52307199
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于事件相机的高动态范围密集高速目标测量方法
- 批准号:12372189
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于深度动态先验的耦合降质图像自监督高动态范围重建方法
- 批准号:62301432
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
- 批准号:
10698708 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Parameter-driven approach to cross-Bantu typology: Exploring the variation and universals in Bantu languages
跨班图类型学的参数驱动方法:探索班图语言的变异和共性
- 批准号:
23H00622 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Early Childhood Physical Activity: A Dynamic Systems Approach to Reducing Health Disparities
幼儿体育活动:减少健康差异的动态系统方法
- 批准号:
10671049 - 财政年份:2022
- 资助金额:
-- - 项目类别: