The applicability of grey-box performance-based modelling techniques in existing office buildings in the UK

基于灰盒性能的建模技术在英国现有办公楼中的适用性

基本信息

  • 批准号:
    2618266
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This Ph.D. investigates the applicability of grey-box performance-based modelling techniques to describe the thermal dynamics of an existing office building in the UK. The project aims to answer the question of how well grey-box models can predict the internal air temperature and heat loss of an existing office building, in order to evaluate retrofit options and control strategies. An ultra energy-efficient Passive House office building is studied as the case study to identify the best grey-box model structure in terms of providing the highest accuracy with minimum complexity and computational cost. The type, amount and quality of data coming from sensors of a Building Management System (BMS) and the level of detail (LOD) required to inform the model parameters for the office building will be explored.With the wide adoption of building automation systems (BAS) and the Internet of Things (IoT) in buildings, numerous measurements pertaining to the functioning of the buildings and their equipment are continuously gathered by sensors and other sources. This offers numerous chances to create data-driven models for building control and operation. Data-driven modelling, also known as performance-based modelling or inverse approach, is based on measured data after buildings are occupied. These models reflect the actual building thermal dynamics and provide more accurate predictions of building thermal responses. Therefore, performance-based models can be used in model-based control of space heating and cooling, fault detection of mechanical systems, retrofit evaluation for reducing operation energy consumption, shifting and shaving peak demand, and performance monitoring. Moreover, the uncertainties in Building Performance Simulation (BPS) can be reduced if the modelling process can also make use of operational measurements, recorded during building's operation. These uncertainties can result from of a wide range of dynamic, stochastic, and probabilistic elements such as building geometry, material properties, HVAC systems, occupant behaviour, appliance, use scheduling and even weather data, and increase in the case of existing buildings, where less information is available.Although machine learning techniques, such as Artificial Neural Networks (ANN) have been extensively adopted for building energy use prediction in recent decades, despite their high prediction accuracy, these techniques have some drawbacks, including a high demand for data quality, lack of interpretability and intense computational requirements. This approach also produces models with low generalisation between different buildings, which makes building-to-building comparisons of models difficult. Comparing the thermal behaviour of buildings can be of interest for the purposes of energy consumption classification. Grey-box models are a type of data-driven models that retain some physical meaning, while their parameters are calibrated using measured data. Therefore, the grey-box model is more interpretable than machine learning approach and is more computationally efficient.
这个博士调查灰箱性能为基础的建模技术来描述在英国现有的办公楼的热动力学的适用性。该项目旨在回答灰箱模型如何预测现有办公楼的内部空气温度和热损失的问题,以评估改造方案和控制策略。一个超节能的被动房办公楼的案例研究,以确定最好的灰箱模型结构,提供最高的精度,最小的复杂性和计算成本。本课程将探讨楼宇管理系统(BMS)传感器数据的类型、数量和质量,以及为办公楼提供模型参数所需的细节层次(LOD)。随着楼宇自动化系统(BAS)和物联网(IoT)在楼宇中的广泛采用,通过传感器和其它源连续地收集与建筑物及其设备的功能有关的许多测量。这为创建用于建筑控制和运营的数据驱动模型提供了许多机会。数据驱动建模,也称为基于性能的建模或逆方法,是基于建筑物被占用后的测量数据。这些模型反映了实际的建筑热动力学,并提供更准确的预测建筑热响应。因此,基于性能的模型可以用于基于模型的控制的空间加热和冷却,机械系统的故障检测,改造评估,以减少运行能耗,转移和削峰需求,和性能监测。此外,在建筑性能模拟(BPS)的不确定性可以减少,如果建模过程中也可以使用的操作测量,在建筑物的操作过程中记录。这些不确定性可能来自广泛的动态、随机和概率元素,例如建筑物几何形状、材料属性、HVAC系统、居住者行为、电器、使用调度甚至天气数据,并且在现有建筑物的情况下增加,其中可用的信息较少。近几十年来,人工神经网络(ANN)等技术已被广泛用于建筑能源使用预测,尽管这些技术的预测准确率很高,但这些技术也存在一些缺点,包括对数据质量的要求很高,缺乏可解释性和强烈的计算要求。这种方法也产生了不同建筑物之间的低概括模型,这使得建筑物之间的模型比较困难。比较建筑物的热行为对于能源消耗分类可能是有意义的。灰箱模型是一种数据驱动的模型,它保留了一些物理意义,而它们的参数是使用测量数据校准的。因此,灰箱模型比机器学习方法更可解释,并且计算效率更高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Structured adaptive estimation: reliable "grey box" adaptation
结构化自适应估计:可靠的“灰盒”自适应
  • 批准号:
    EP/W014734/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structured adaptive estimation: reliable "grey box" adaptation
结构化自适应估计:可靠的“灰盒”自适应
  • 批准号:
    EP/W014661/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Inference on Expensive, Grey-Box Simulation Models
合作研究:昂贵的灰盒仿真模型的推理
  • 批准号:
    2206973
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Inference on Expensive, Grey-Box Simulation Models
合作研究:昂贵的灰盒仿真模型的推理
  • 批准号:
    2206972
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
System identification of parameter-dependent systems based on grey-box modeling
基于灰盒建模的参数相关系统的系统辨识
  • 批准号:
    25420439
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a grey-box model to understand and predict wear of coated cutting tools during turning
开发灰盒模型以了解和预测车削过程中涂层切削刀具的磨损
  • 批准号:
    521380776
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multidomain Grey Box based assistant for tool coating selection in high performance milling [MultiDomHPC]
基于多域灰盒的高性能铣削刀具涂层选择助手 [MultiDomHPC]
  • 批准号:
    521383911
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了