Fully Bayesian Reinforcement Learning for Control of Continuous Industrial Processes

用于控制连续工业过程的完全贝叶斯强化学习

基本信息

  • 批准号:
    2640133
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This exciting and innovative PhD, in partnership with NSG, relates to settings where a continuous manufacturing process is monitored and so controlled with a focus on both guaranteeing the quality of the product and minimising the costs of doing so, e.g. by minimising the amount of excess material used to guarantee that certain specifications of the product (e.g. thickness or defect rate) are met. The focus is on manufacture and treatment of glass. In such settings there is often a significant latency (i.e. minutes) between the control input changing and the response being observable. It is challenging to apply feedback control in these contexts, so existing Engineering solutions often make use of physical models for the process and employ predictive model-based control. While this does make it possible to produce desired variations in the product, the approach relies on the physical models for the process and the models for the sensors to be known. These models are well understood in general, but there are aspects where it is not possible to build accurate models that, for example, can infer how the fine detail of the thickness profile is impacted by variation in the power applied to heating elements at some historic time. Furthermore, the real-world changes over time (e.g. because valves become worn or because scheduled maintenance has not occurred recently) and while it is possible to develop work-arounds to adapt to these changes, these work-arounds can fail. Such failures can result in sudden and significant degradation in the quality of product. The fundamental challenge is then to develop a control strategy that fully capitalises on: offline historic data; parameterised models that capture the extensive but incomplete understanding of the processes and sensors' performance; offline simulated experience derived from those models; online data from sensors. Developing such a control strategy will require numerical Bayesian inference algorithms (e.g. Markov Chain Monte Carlo) to make inferences about the models in a way that exploits the historic data and domain experts' existing understanding. Borrowing from recent successful applications of Reinforcement Learning (RL) in other domains, RL will then be used to learn how best to apply the control given the inferred model. Such RL is computationally intensive and will therefore require use of High-Performance Computing resources.
这个令人兴奋和创新的博士学位,与NSG合作,涉及到连续制造过程的监控和控制,重点是保证产品的质量和最小化这样做的成本,例如通过最大限度地减少用于保证产品的某些规格(例如厚度或缺陷率)的多余材料的量。重点是玻璃的制造和处理。在这样的设置中,在控制输入改变和可观察到的响应之间通常存在显著的延迟(即,分钟)。在这些情况下应用反馈控制具有挑战性,因此现有的工程解决方案通常使用过程的物理模型并采用基于模型的预测控制。虽然这确实可以在产品中产生所需的变化,但该方法依赖于过程的物理模型和已知的传感器模型。这些模型通常被很好地理解,但是存在不可能构建精确模型的方面,例如,该精确模型可以推断厚度轮廓的精细细节如何受到在某个历史时间施加到加热元件的功率的变化的影响。此外,现实世界随着时间的推移而变化(例如,因为阀门磨损或因为最近没有进行定期维护),虽然可以开发变通方法来适应这些变化,但这些变通方法可能会失败。此类故障可能导致产品质量突然显著下降。最根本的挑战是开发一种控制策略,充分利用:离线历史数据;参数化模型,捕获对过程和传感器性能的广泛但不完整的理解;从这些模型中获得的离线模拟经验;来自传感器的在线数据。开发这样的控制策略将需要数值贝叶斯推理算法(例如马尔可夫链蒙特卡罗),以利用历史数据和领域专家现有理解的方式对模型进行推理。借鉴强化学习(RL)最近在其他领域的成功应用,RL将用于学习如何在给定推断模型的情况下最好地应用控制。这种RL是计算密集型的,因此需要使用高性能计算资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable Bayesian Reinforcement Learning in the Games Industry
游戏行业中的可扩展贝叶斯强化学习
  • 批准号:
    2890029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Affordable High Quality Control Using Structured Bayesian Reinforcement Learning for Articulated Robot in Biomedical Applications
使用结构化贝叶斯强化学习对生物医学应用中的铰接式机器人进行经济实惠的高质量控制
  • 批准号:
    23K16976
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deep Bayesian Reinforcement Learning in Changing Environments
不断变化的环境中的深度贝叶斯强化学习
  • 批准号:
    2724208
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Safe Artificial Intelligence with Bayesian Reinforcement Learning
通过贝叶斯强化学习实现安全人工智能
  • 批准号:
    534795-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Safe Artificial Intelligence with Bayesian Reinforcement Learning
通过贝叶斯强化学习实现安全人工智能
  • 批准号:
    534795-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Safe Artificial Intelligence with Bayesian Reinforcement Learning
通过贝叶斯强化学习实现安全人工智能
  • 批准号:
    534795-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Deep Reinforcement Learning
贝叶斯深度强化学习
  • 批准号:
    2243850
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
RTML: Small: Real-Time Model-Based Bayesian Reinforcement Learning
RTML:小型:基于实时模型的贝叶斯强化学习
  • 批准号:
    1937396
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deep Bayesian Reinforcement Learning
深度贝叶斯强化学习
  • 批准号:
    522237-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Engage Plus Grants Program
RI: SMALL: Robust Reinforcement Learning Using Bayesian Models
RI:小:使用贝叶斯模型的鲁棒强化学习
  • 批准号:
    1815275
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了