Vascular Assembly on Micropatterned Biomaterials
微图案生物材料上的血管组装
基本信息
- 批准号:7095368
- 负责人:
- 金额:$ 18.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-15 至 2008-02-28
- 项目状态:已结题
- 来源:
- 关键词:biodegradable productbioengineering /biomedical engineeringbiomaterial development /preparationbiomimeticsbiotechnologyblood vessel prosthesiscapillary bedcell adhesioncell cell interactioncell lineelectrolytesliver cellsmedical implant sciencemolecular assembly /self assemblytissue engineeringvascular endothelium
项目摘要
DESCRIPTION (provided by applicant): Tissues engineered in vitro can be used to restore and repair human organs, potentially saving the lives of some patients waiting for organ donation. To engineer tissues in vitro, cells are attached to a network of adhesive proteins, the extracellular matrix, on biodegradable scaffolds. One major challenge in developing viable tissues is the need to control the spatial distribution of blood vessels to supply adequate oxygen and nutrients. Previous work in developing vascularized tissues has only been successful in forming vascularized skin. Engineering vascularized tissues that have more complex structures has not been achieved. The key to this problem lies in the development of technologies to precisely organize the spatial arrangement of various cell types to mimic the structure of living tissues. The proposed research is a venture into new strategies for inducing and spatially guiding endothelial cells to assemble into vascular networks through control of surface topography, spatial and temporal distribution of cell adhesive/resistant molecules, and microscale cell-cell interactions on implantable biomaterials. The immediate focus of this research is to establish the knowledge and technology for creating capillary networks that can be used for future effort for designing and fabricating vascularized tissues at a commercially and clinically relevant scale. The key innovation of this research lies in the formation of microscale topological and chemical patterns to control cell-cell interactions and induce endothelial cells to form functional capillary networks next to liver cells. Our preliminary investigations with these microfabrication techniques have convinced us of the utility of these tools for precisely defining cellular microenvironments and controlling cell behaviors. We will use these tools to achieve the following specific objectives that altogether lead us towards our project goal of creating vascular networks next to liver cells: 1. Explore the use of a novel polyelectrolyte patterning method for creating a network of capillaries on biodegradable scaffolds. 2. Structure multiple cell types using a novel "Cell Photolithography" method and ascertain the effects of microscale endothelium-hepatocyte interactions on the endothelial phenotype.
描述(由申请人提供):体外工程组织可用于人体器官的修复和修复,可能挽救一些等待器官捐赠的患者的生命。为了在体外设计组织,将细胞附着在可降解支架上的黏附蛋白网络(细胞外基质)上。发展有活力组织的一个主要挑战是需要控制血管的空间分布以提供足够的氧气和营养。以前在发展血管化组织方面的工作只成功地形成了血管化的皮肤。具有更复杂结构的工程血管化组织尚未实现。解决这一问题的关键在于技术的发展,以精确组织各种细胞类型的空间排列,以模拟活组织的结构。该研究旨在通过控制表面形貌、细胞粘附/抗性分子的时空分布以及可植入生物材料上的微尺度细胞间相互作用,探索诱导和空间引导内皮细胞组装成血管网络的新策略。这项研究的直接重点是建立创建毛细血管网络的知识和技术,可用于未来在商业和临床相关规模上设计和制造血管化组织的努力。本研究的关键创新在于形成微观尺度的拓扑和化学模式来控制细胞间的相互作用,并诱导内皮细胞在肝细胞旁边形成功能性的毛细血管网络。我们对这些微加工技术的初步研究使我们确信这些工具在精确定义细胞微环境和控制细胞行为方面的实用性。我们将使用这些工具来实现以下具体目标,这些目标共同引导我们实现在肝细胞旁边创建血管网络的项目目标:探索使用一种新的聚电解质图图化方法在可生物降解支架上创建毛细血管网络。2. 使用一种新的“细胞光刻”方法构建多种细胞类型,并确定微尺度内皮-肝细胞相互作用对内皮表型的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHIA-CHI HO其他文献
CHIA-CHI HO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHIA-CHI HO', 18)}}的其他基金
Biomaterials Directed Cell Polarity and Migration
生物材料引导细胞极性和迁移
- 批准号:
9113836 - 财政年份:2014
- 资助金额:
$ 18.61万 - 项目类别:
Biomaterials Directed Cell Polarity and Migration
生物材料引导细胞极性和迁移
- 批准号:
9128646 - 财政年份:2014
- 资助金额:
$ 18.61万 - 项目类别:
Biomaterials Directed Cell Polarity and Migration
生物材料引导细胞极性和迁移
- 批准号:
8758786 - 财政年份:2014
- 资助金额:
$ 18.61万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8214559 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
7767586 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8432764 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8013525 - 财政年份:2010
- 资助金额:
$ 18.61万 - 项目类别:
Vascular Assembly on Micropatterned Biomaterials
微图案生物材料上的血管组装
- 批准号:
7230191 - 财政年份:2006
- 资助金额:
$ 18.61万 - 项目类别:
Cell Shape Control of Migration on Biomaterials
生物材料上迁移的细胞形状控制
- 批准号:
6917465 - 财政年份:2005
- 资助金额:
$ 18.61万 - 项目类别:
Cell Shape Control of Migration on Biomaterials
生物材料上迁移的细胞形状控制
- 批准号:
7038349 - 财政年份:2005
- 资助金额:
$ 18.61万 - 项目类别:














{{item.name}}会员




