Next Generation Virtual Musical Instruments: Physics-informed Neural Networks for Sound Synthesis and Digital Audio Effects

下一代虚拟乐器:用于声音合成和数字音频效果的物理信息神经网络

基本信息

  • 批准号:
    2710512
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Physics-informed neural networks are an emerging class of algorithm in computational physics which combine traditional physics-based simulation methods with modern machine learning approaches. This project aims to develop physics-informed neural networks for the unique purpose of sound synthesis and audio effects modelling - emulating the sonic characteristics of musical instruments and equipment through digital signal processing. The motivation is to create next-generation digital instruments which are more realistic and therefore more inspiring to musicians. Specifically, the focus will be on vocal synthesizers, guitar amplifier simulations and virtual room environments. Context: Digital sound synthesis has been an active area of research since the 1960s when John Chowning pioneered a frequency modulation algorithm, later commercialised by Yamaha to develop the first digital synthesiser. Digital instruments and audio effects are now ubiquitous with music today, however a key challenge remains in their design: creating organic, realistic timbres - generally desirable qualities to musicians. Engineers and researchers therefore use two distinct approaches - physics-based modelling (white-box modelling) and machine learning (black-box modelling) - to digitally emulate the sound of musical systems including acoustic instruments, performance spaces, analogue circuitry (e.g., guitar amplifiers) or even human voices. Physics-based modelling involves analysis of the system to derive the governing differential equations, then solving these via numerical simulation to produce audio. This is often labour intensive and numerical simulation methods have inherent inaccuracies, computational costs, and stability issues. On the contrary, a machine learning approach assumes no human knowledge of the reference system and instead a general algorithm (normally a class of artificial neural network) is 'trained' to replicate a given input-output mapping. The black-box nature of neural networks makes them extremely flexible and powerful; however, disadvantages include generalization error, the reliance on large data sets and high computational requirements. In this research project, the objective is to combine the two existing approaches into hybrid 'grey-box' methods to obtain better overall performance in terms of efficiency, accuracy, and generality. This will be done through physics-informed neural networks (PINNs). A rapidly growing area of research in computational physics, PINNs are machine learning models which use the governing physical equations as training data and have been shown to perform better than purely data-driven methods. This research project will develop PINNs for the specific purpose of sound synthesis: creating end-to-end neural networks for the accurate, efficient simulation of various acoustic and electric systems. Methodology: PINNs will be developed for three sub-topics in digital audio: Virtual analogue modelling Room acoustics modelling Vocal synthesis In each area, one or more case studies will be undertaken, with the general methodology being: Determine the known physics of the system and governing equations. Gather training/testing data e.g., audio recordings. Develop pure machine learning models. Integrate physical constraints and obtain results. Investigate, design, and optimise model architectures. Evaluate and compare the models based on the following metrics: Numerical accuracy - in time and frequency domains. Perceptual accuracy - through blind listening tests with a group of volunteers. Computational demand (CPU and memory) Develop the best models into prototype instruments.
物理信息神经网络是计算物理学中新兴的一类算法,它将传统的基于物理的仿真方法与现代机器学习方法相结合。该项目旨在开发物理信息神经网络,用于声音合成和音频效果建模的独特目的-通过数字信号处理模拟乐器和设备的声音特性。其动机是创造下一代数字乐器,这些乐器更逼真,因此对音乐家更有启发性。具体来说,重点将放在声乐合成器,吉他放大器模拟和虚拟房间环境。内容:自20世纪60年代以来,数字声音合成一直是一个活跃的研究领域,当时John Chowning开创了一种频率调制算法,后来由Yamaha商业化,开发了第一台数字合成器。数字乐器和音频效果在当今的音乐中无处不在,但在其设计中仍然存在一个关键挑战:创造有机,逼真的音色-音乐家通常希望的品质。因此,工程师和研究人员使用两种不同的方法-基于物理的建模(白盒建模)和机器学习(黑盒建模)-来数字仿真音乐系统的声音,包括声学乐器,表演空间,模拟电路(例如,吉他放大器)甚至人声。基于物理的建模包括分析系统以推导控制微分方程,然后通过数值模拟求解这些方程以产生音频。这通常是劳动密集型的,并且数值模拟方法具有固有的不准确性、计算成本和稳定性问题。相反,机器学习方法假设没有参考系统的人类知识,而是“训练”通用算法(通常是一类人工神经网络)来复制给定的输入-输出映射。神经网络的黑盒性质使其非常灵活和强大;然而,缺点包括泛化错误,对大数据集的依赖和高计算要求。在这个研究项目中,目标是将现有的两种方法联合收割机结合成混合“灰箱”方法,以获得更好的整体性能,在效率,准确性和通用性方面。这将通过物理信息神经网络(PINN)来完成。PINN是计算物理学中一个快速发展的研究领域,它是使用控制物理方程作为训练数据的机器学习模型,并且已经被证明比纯粹的数据驱动方法表现更好。该研究项目将为声音合成的特定目的开发PINN:创建端到端神经网络,以准确,高效地模拟各种声学和电气系统。方法学:PINN将为数字音频的三个子主题开发:虚拟模拟建模室内声学建模声乐合成在每个领域,将进行一个或多个案例研究,一般方法是:确定系统的已知物理和控制方程。收集培训/测试数据,例如,录音开发纯机器学习模型。整合物理约束并获得结果。调查、设计和优化模型架构。根据以下指标评估和比较模型:数值精度-时域和频域。感知准确性-通过一组志愿者的盲听测试。计算需求(CPU和内存)将最佳模型开发成原型仪器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

A computational model of fibrosis and the cardiac conduction system: the next generation of virtual heart models for research and teaching
纤维化和心脏传导系统的计算模型:用于研究和教学的下一代虚拟心脏模型
  • 批准号:
    NC/Y500598/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Next Generation Spatial Data Management for Virtual Spatial Systems
虚拟空间系统的下一代空间数据管理
  • 批准号:
    DP230101534
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Next Generation Surgical Microscopes for Rapid Virtual Histopathology
用于快速虚拟组织病理学的下一代手术显微镜
  • 批准号:
    469529
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
SBIR Phase II: A Virtual-Reality Next-Generation Introductory STEM Platform
SBIR 第二阶段:虚拟现实下一代入门 STEM 平台
  • 批准号:
    2026138
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Design of an instrumented and AI-ready virtual reality headset for next-generation immersive applications (Phase 1)
为下一代沉浸式应用设计仪器化且支持人工智能的虚拟现实耳机(第一阶段)
  • 批准号:
    548759-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Idea to Innovation
Development of a New Next-Generation Aerial Personal Phoenix Authentication System Using Virtual Panels
使用虚拟面板开发新型下一代空中个人 Phoenix 身份验证系统
  • 批准号:
    20K11820
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ICE-T: RC: Millimeter Wave Communications and Edge Computing for Next Generation Tetherless Mobile Virtual Reality
ICE-T:RC:下一代无线移动虚拟现实的毫米波通信和边缘计算
  • 批准号:
    2032033
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase II: Virtual Music helper, next-generation educational social platform for conservatory music practice and performance empowered by AI and AR
SBIR第二期:虚拟音乐助手,AI和AR赋能的下一代音乐学院音乐练习和表演教育社交平台
  • 批准号:
    1927084
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of the next-generation hybrid vestibular rehabilitation using virtual reality and vestibular substitution device
使用虚拟现实和前庭替代装置开发下一代混合前庭康复
  • 批准号:
    19K09847
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next generation virtual datacenter management and monitoring framework
下一代虚拟数据中心管理和监控框架
  • 批准号:
    470999-2014
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了