Multi-objective de novo protein design

多目标从头蛋白质设计

基本信息

  • 批准号:
    2721830
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

De novo protein design involves generating protein sequences that fold to a desired structure. This endeavour encompasses numerous applications across the healthcare and the fine chemistry industries: formulating and optimising protein therapeutics that bind drug targets, generating artificial proteins that elicit immune response against a specific antigen, developing enzyme catalysts for industrial applications, or constructing protein-based nanostructures that can deliver drugs more efficiently. While the field of protein design has experienced significant progress in the past decade, one salient challenge it has faced is the limited control over the physicochemical properties of the generated designs, which invariably leads to multiple iterations of the design-make-test experimental cycle. The objective of this doctoral project is to fill this knowledge gap by developing deep learning algorithms to design proteins with specific physicochemical properties. This project falls within the EPSRC digital healthcare research area, and more generally under the artificial and intelligence research theme.The project comprises three independent work packages.- Protein property optimization algorithms. The first work package will expand the property prediction models developed in the summer rotation into a property engineering platform. The property prediction algorithms will be extended from thermodynamic stability into other properties such as solubility and post-translational modifications. The candidate will explore multi-objective optimization algorithms to enable targeted improvement of the physicochemical properties of a protein. This package includes experimentation across different deep learning architectures, starting from the initial combination of graph convolutional neural networks to other architectures incorporating neural attention.- De novo protein design. The next stage of the project will address the problem of simultaneously generating a new, physically plausible three-dimensional structure for a protein, and an amino acid sequence that encodes these features. The candidate will develop generative models, starting from the currently existing literature in diffusion models and hallucination networks, and condition them on predicted physicochemical properties such as stability and solubility to ensure that the generated designs are optimal for development at a protein production facility. The candidate and her supervisors are currently in conversations with the Woolfson Lab in the University of Bristol who are keen to provide data and validate generated designs experimentally. However, the project's success is not dependent on this collaboration.- Multi-objective protein design. The last part of the project will focus on multi-objective protein design i.e. designing protein sequences that fulfil a variety of conditions. The candidate will combine her understanding of protein property prediction and de novo protein design to generate artificial proteins, like vaccines and antibodies, that pass a performance profile on multiple properties like immunogenicity, thermostability, toxicity, half-life etc. This part of the project will integrate the machine learning architectures developed by the candidate in previous years, as well as other models generated within the ecosystem of the Oxford Protein Informatics Group.
从头蛋白质设计涉及产生折叠成所需结构的蛋白质序列。这一努力涵盖了医疗保健和精细化学行业的众多应用:制定和优化结合药物靶点的蛋白质治疗剂,产生引发针对特定抗原的免疫反应的人工蛋白质,开发用于工业应用的酶催化剂,或构建可以更有效地递送药物的蛋白质纳米结构。虽然蛋白质设计领域在过去十年中取得了重大进展,但它面临的一个突出挑战是对生成的设计的物理化学性质的有限控制,这总是导致设计-制造-测试实验周期的多次迭代。这个博士项目的目标是通过开发深度学习算法来设计具有特定物理化学性质的蛋白质来填补这一知识空白。该项目福尔斯属于EPSRC数字医疗保健研究领域,更广泛地说,属于人工和智能研究主题。该项目包括三个独立的工作包。蛋白质性质优化算法。第一个工作包将把夏季轮调开发的房地产预测模型扩展为房地产工程平台。性质预测算法将从热力学稳定性扩展到其他性质,如溶解度和翻译后修饰。候选人将探索多目标优化算法,以实现蛋白质物理化学性质的有针对性的改善。该软件包包括不同深度学习架构的实验,从图卷积神经网络的初始组合到其他包含神经注意力的架构。从头蛋白质设计。该项目的下一阶段将解决同时生成蛋白质的新的物理上合理的三维结构和编码这些特征的氨基酸序列的问题。候选人将从扩散模型和幻觉网络的现有文献开始开发生成模型,并根据预测的物理化学性质(如稳定性和溶解度)对其进行调节,以确保生成的设计对于蛋白质生产设施的开发是最佳的。这位候选人和她的导师目前正在与布里斯托大学的伍尔夫森实验室进行对话,他们热衷于提供数据并通过实验验证生成的设计。然而,该项目的成功并不依赖于这种合作。多目标蛋白质设计该项目的最后一部分将侧重于多目标蛋白质设计,即设计满足各种条件的蛋白质序列。候选人将联合收割机结合她对蛋白质性质预测和从头蛋白质设计的理解,以生成人工蛋白质,如疫苗和抗体,这些蛋白质通过免疫原性,热稳定性,毒性,半衰期等多个性质的性能特征。以及牛津蛋白质信息学小组生态系统内生成的其他模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
  • 批准号:
    2348910
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
  • 批准号:
    10481965
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
  • 批准号:
    EP/X041239/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Watsuji on subjectivity: the impact of Hegel on his thought and its pertinence for the philosophy of objective spirit
和司论主体性:黑格尔对其思想的影响及其与客观精神哲学的关联
  • 批准号:
    24K03370
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Objective Measurement and Analysis of Fibre Extraction
纤维提取的客观测量和分析
  • 批准号:
    10089054
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y03743X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
  • 批准号:
    EP/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y037367/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Transformer-based Framework for Multi-objective Reinforcement Learning using Hierarchical Policies
使用分层策略的基于 Transformer 的多目标强化学习框架
  • 批准号:
    24K20843
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了