Quantitative, multimodal, imaging-based assessment of hypoxia in Non-Small Cell Lung Cancer
非小细胞肺癌缺氧的定量、多模式、基于成像的评估
基本信息
- 批准号:2721975
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Lung Cancer is the leading cause of cancer death in the UK and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Hypoxia, a lack of oxygen, in lung cancer tumours has been shown to lead to worse patient outcomes and hypoxic tumours require up to three times as much radiation therapy as non-hypoxic tumours. A recent study at the University of Oxford showed that the anti-malarial drug atovaquone is effective at reducing hypoxia in tumours of non-small cell lung cancer patients. The drug is already approved, and it would therefore be easy to adopt into clinical practice. Currently hypoxia is measured using [18F]-fluoromisonidazole Positron Emission Tomography and Computed Tomography (FMISO-PET/CT) scans, where the tumour and descending aorta are segmented manually by an expert clinician to calculate the hypoxic volume. This is a time-consuming process and automating the process would speed up the time taken to measure hypoxia during clinical trials. The FMISO PET scans are also expensive and only used in research, therefore, to identify patients with hypoxic tumours during their cancer pathway, hypoxia needs to be measured from routinely collected or cheaper modalities.In this project we aim to automate the process of measuring hypoxia in lung cancer tumours using multimodal imaging data. Using Artificial Intelligence (AI) including deep learning techniques, novel methods for tumour segmentation from multimodal imaging data such as FMISO-PET/CT scans will be developed. Furthermore, deep radiomics will then be investigated to extract features that could measure of hypoxia within the tumour volume. Both deep learning and deep radiomics will then be used to see if any hypoxic features can be found from other modalities that are routinely collected or cheaper that could easily be integrated into a patient's cancer pathway. Deep Learning has been successful in many medical imaging tasks, including image segmentation. Radiomics is an active area of research for extracting textural features from radiological images, and recent studies have shown that convolutional neural networks can capture textural information, therefore advanced deep radiomic techniques could be developed for extracting hypoxic features from different modalities.The project by its nature is high-collaborative venture and collaboration includes Department of Oncology in Oxford, and Oxford University Hospitals NHS Foundation Trust. The collaboration will provide access to the Atovaquone as Tumour HypOxia Modifier (ATOM) dataset, containing non-small cell lung cancer patients, each with many imaging and non-imaging modalities.In summary, automating the time-consuming task of measuring hypoxia from FMISO-PET/CT scans will speed up the process and allow more patients to be included in future clinical trials. Additionally, being able to measure hypoxia from routinely collected or cheaper modalities will allow the measurement of hypoxia to be integrated into the patient cancer pathway. This would mean that patients with hypoxic tumours could be offered alternative treatment to improve patient outcomes.The project falls within the EPSRC Healthcare Technologies research theme and the Medical Imaging and AI Technologies research areas.
肺癌是英国癌症死亡的主要原因,非小细胞肺癌(NSCLC)是最常见的肺癌类型。肺癌肿瘤中的缺氧(缺氧)已被证明会导致患者预后更差,缺氧肿瘤需要的放射治疗是非缺氧肿瘤的三倍。牛津大学最近的一项研究表明,抗疟疾药物阿托伐醌可有效减少非小细胞肺癌患者肿瘤中的缺氧。这种药物已经获得批准,因此很容易应用于临床实践。目前使用[18 F]-氟咪唑正电子发射断层扫描和计算机断层扫描(FMISO-PET/CT)扫描测量缺氧,其中肿瘤和降主动脉由专家临床医生手动分割以计算缺氧体积。这是一个耗时的过程,自动化过程将加快临床试验期间测量缺氧所需的时间。FMISO PET扫描也是昂贵的,并且仅用于研究,因此,为了在癌症途径中识别患有缺氧肿瘤的患者,需要通过常规收集或更便宜的模式来测量缺氧。在这个项目中,我们的目标是使用多模态成像数据自动测量肺癌肿瘤中的缺氧。使用人工智能(AI),包括深度学习技术,将开发从FMISO-PET/CT扫描等多模态成像数据中进行肿瘤分割的新方法。此外,将研究深度放射组学,以提取可以测量肿瘤体积内缺氧的特征。然后,深度学习和深度放射组学都将被用来观察是否可以从其他常规收集或更便宜的方式中找到任何缺氧特征,这些方式可以很容易地整合到患者的癌症途径中。深度学习在许多医学成像任务中取得了成功,包括图像分割。放射组学是从放射图像中提取纹理特征的一个活跃的研究领域,最近的研究表明,卷积神经网络可以捕获纹理信息,因此可以开发先进的深度放射组学技术,用于从不同模态中提取缺氧特征。该项目本质上是高度合作的风险投资,合作包括牛津大学肿瘤学系,和牛津大学医院NHS基金会信托基金。此次合作将提供Atovaquone as Tumour Hypoxia Modifier(ATOM)数据集的访问权限,该数据集包含非小细胞肺癌患者,每个患者都有许多成像和非成像模式。总之,通过FMISO-PET/CT扫描自动化测量缺氧的耗时任务将加快这一过程,并允许更多患者纳入未来的临床试验。此外,能够从常规收集的或更便宜的方式测量缺氧将允许缺氧的测量被整合到患者癌症途径中。这将意味着缺氧肿瘤患者可以获得替代治疗,以改善患者的预后。该项目福尔斯EPSRC医疗保健技术研究主题以及医学成像和人工智能技术研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Development and Pre-Clinical Validation of Quantitative Imaging of Cell State Kinetics (QuICK) for Functional Precision Oncology
用于功能性精准肿瘤学的细胞状态动力学定量成像 (QuICK) 的开发和临床前验证
- 批准号:
10737379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quantitative Magnetic Resonance Properties of Cerebrospinal Fluid and Brain Health Outcomes in Pediatric Congenital Heart Disease
小儿先天性心脏病脑脊液的定量磁共振特性与脑健康结果
- 批准号:
10701753 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Quantitative Magnetic Resonance Properties of Cerebrospinal Fluid and Brain Health Outcomes in Pediatric Congenital Heart Disease
小儿先天性心脏病脑脊液的定量磁共振特性与脑健康结果
- 批准号:
10535593 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Multimodal quantitative PET/MR imaging of pulmonary fibrosis
肺纤维化的多模态定量 PET/MR 成像
- 批准号:
10689757 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multimodal quantitative PET/MR imaging of pulmonary fibrosis
肺纤维化的多模态定量 PET/MR 成像
- 批准号:
10477413 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dye-free, multimodal, quantitative imaging to assess bowel perfusion during laparoscopic colorectal resection
无染料、多模态、定量成像,用于评估腹腔镜结直肠切除术期间的肠道灌注
- 批准号:
10383413 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




