Improving Statistical Machine Learning approaches for Time-to-Event Prediction Modelling

改进事件时间预测建模的统计机器学习方法

基本信息

  • 批准号:
    2722161
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

BackgroundThe implications of more than one chronic health condition occurring in the same individual on long-term health outcomes is often unclear. Existing studies typically focus on the association of a single condition with a single outcome and often ignore or select out individuals who might have a background of multiple long-term conditions (MLTC). Consequently, the health needs of certain groups of individuals with MLTCs may not be adequately addressed. One obstacle to studying the impact of MLTC is the number of possible combinations of health conditions. It may not be feasible to identify and recruit sufficiently large numbers of individuals with certain sets of conditions to study.To overcome these challenges, a recent approach has been to retrospectively use information held in medical record databases. Groups of individuals with similar characteristics can be identified from the database and compared with other groups to determine why certain health outcomes manifest. Computer models, based on statistical machine learning algorithms, can then be created to predict the future risk of these health outcome given individual characteristics. However, the use of this historical datasets to create prediction models needs careful handling. The data may have been acquired under a different context and/or premise to the situation in which you may be interested, and this could lead to computer models that give biased or misleading insights. In addition, complex machine learning models can lack robustness and be prone to unstable behaviour, for example, giving very different risk probabilities for two nearly identical patients.Aims & ObjectivesThis research aims to develop methodologies that will improve the robustness and validity of statistical machine learning-based prediction models that are constructed from observational data:1) To assess the robustness and stability of existing statistical machine learning approaches for time-to-event modelling,2) To develop methodology to improve aspects of the robustness and stability of statistical machine learning approaches for time-to-event modelling,3) To test the novel methodology using real-world primary care data and compare it to existing approaches.Novelty of the research methodologyStandard machine learning development focuses on the use of accuracy-related criteria to measure how well prediction models perform. However, there is increasing awareness that in real-world usage, accuracy is just one of several important criteria that determines the usefulness of a prediction model. In this research we will study the use of model training criteria that encompass considerations of the (i) four levels of model stability (as defined in Riley & Collins (2023), (ii) consistency between model versions after updating, and (iii) sensitivity to unusual data inputs.Alignment to EPSRC's strategies and research areasThis project falls within the 'EPSRC Healthcare Technologies research area' where "Optimising disease prediction, diagnosis and intervention" is one of the themes or research areas listed on this website https://www.epsrc.ac.uk/research/ourportfolio/themes/It will create new methods for analysing large real-world primary care health data sets, underpin patient-specific predictive models, and support the identification of opportunities for prevention of disease or its recurrence.CollaborationsThis project will involve a collaboration with the University of Birmingham.
背景同一个人发生不止一种慢性健康状况对长期健康结果的影响通常尚不清楚。现有的研究通常关注单一病症与单一结果的关联,并且经常忽略或选择可能具有多种长期病症(MLTC)背景的个体。因此,某些患有 MLTC 的人群的健康需求可能无法得到充分满足。研究 MLTC 影响的障碍之一是可能的健康状况组合的数量。识别和招募足够多具有某些条件的个体来进行研究可能是不可行的。为了克服这些挑战,最近的一种方法是回顾性地使用医疗记录数据库中保存的信息。可以从数据库中识别具有相似特征的个体群体,并将其与其他群体进行比较,以确定为什么会出现某些健康结果。然后可以创建基于统计机器学习算法的计算机模型,以根据个人特征预测这些健康结果的未来风险。然而,使用这些历史数据集来创建预测模型需要谨慎处理。这些数据可能是在与您可能感兴趣的情况不同的背景和/或前提下获取的,这可能会导致计算机模型给出有偏见或误导性的见解。此外,复杂的机器学习模型可能缺乏鲁棒性,并且容易出现不稳定的行为,例如,为两个几乎相同的患者提供截然不同的风险概率。目的和目标本研究旨在开发方法,以提高根据观察数据构建的基于统计机器学习的预测模型的鲁棒性和有效性:1) 评估现有的事件时间建模统计机器学习方法的鲁棒性和稳定性,2) 开发方法 提高事件时间建模统计机器学习方法的鲁棒性和稳定性,3)使用现实世界的初级保健数据测试新方法,并将其与现有方法进行比较。研究方法的新颖性标准机器学习开发侧重于使用与准确性相关的标准来衡量预测模型的表现。然而,人们越来越意识到,在现实世界的使用中,准确性只是决定预测模型有用性的几个重要标准之一。在这项研究中,我们将研究模型训练标准的使用,其中包括考虑以下因素:(i) 模型稳定性的四个级别(如 Riley & Collins (2023) 中所定义),(ii) 更新后模型版本之间的一致性,以及 (iii) 对异常数据输入的敏感性。与 EPSRC 的战略和研究领域保持一致该项目属于“EPSRC 医疗保健技术研究领域”,其中“优化疾病” “预测、诊断和干预”是本网站列出的主题或研究领域之一 https://www.epsrc.ac.uk/research/ourportfolio/themes/它将创建用于分析大型现实世界初级保健健康数据集的新方法,支持患者特定的预测模型,并支持识别预防疾病或其复发的机会。合作该项目将涉及 与伯明翰大学合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
  • 批准号:
    DP230101671
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886777
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了