ULTRA-HIGH RESOLUTION MODELLING OF THE HUMAN BRAIN USING MULTISCALE, MULTIMODAL IMAGING AND AI
使用多尺度、多模态成像和人工智能对人脑进行超高分辨率建模
基本信息
- 批准号:2722584
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
1. Context of the research including potential impactResearchers at UCL have developed a new X-ray imaging method called Hierarchical Phase-Contrast Tomography (HiP-CT), which allows imaging whole human organs in detail up to the cellular level. HiP-CT is an X-ray phase propagation technique that uses the European Synchrotron Radiation Facility (ESRF) Extremely Brilliant Source to perform non-destructive, three-dimensional (3D) scans with hierarchically increasing resolution at any location in whole human organs, down to 1 um/voxel in Volumes of Interest. As such, these imaging data not only provide a novel view of the complex hierarchical structure of the human brain but could also provide a detailed understanding of the biological processes at work during neurodegenerative diseases which are difficult to diagnose.This PhD will develop advanced AI tools for data processing, meaningful interpretation and analysis, and translation of these high-resolution images to clinical use.2. Aims and objectivesThe goal of this project is to enhance our understanding of the structure of white matter tracts and blood vessels in the brain, both in healthy individuals and in those with neurodegenerative conditions. This will be done by developing advanced computational techniques, such as large-scale AI, to analyze multi-resolution images obtained from a synchrotron and then correlating these images with MRI images to realise clinical use in the assessment of a neurodegenerative disease such as Alzheimer's.3. Novelty of the research methodologyThe HiP-CT imaging method enables imaging of the human brain with a resolution of up to 300 times greater than the current highest resolution MRI scans and so requires bespoke computational methods to be developed for modelling brain structure. These imaging data are unique worldwide and will be correlated to clinical MRI images to improve the current models of white matter tract orientation and vascular architecture, in healthy and neurodegenerative cases.4. Alignment to EPSRC's strategies and research areasThe project aligns with the priorities of the EPSRC Healthcare Technologies Theme, specifically around Novel imaging technologies. This research will support the development of advanced AI tools for data processing, making sense of complex imaging data, understanding underlying pathology and monitoring progression of neurodegenerative diseases.5.Any companies or collaborators involvedChan Zuckerberg Initiative
1.研究背景包括潜在影响伦敦大学学院的研究人员开发了一种新的X射线成像方法,称为分层相位对比层析成像(HIP-CT),它可以对整个人体器官进行详细成像,甚至可以达到细胞水平。HIP-CT是一种X射线相位传播技术,它使用欧洲同步辐射设备(ESRF)的极亮光源,在整个人体器官的任何位置执行非破坏性的三维(3D)扫描,分辨率分级增加,目标体积的分辨率最低可达1微米/体素。因此,这些成像数据不仅提供了人脑复杂层次结构的新视角,还可以提供对难以诊断的神经退行性疾病过程中工作的生物过程的详细了解。该博士将开发先进的人工智能工具,用于数据处理、有意义的解释和分析,并将这些高分辨率图像转化为临床使用。目的和目的这个项目的目标是加强我们对大脑中白质束和血管结构的了解,无论是在健康的人还是那些患有神经退行性疾病的人。这将通过开发先进的计算技术来完成,例如大规模人工智能,以分析从同步加速器获得的多分辨率图像,然后将这些图像与MRI图像相关联,以实现在评估神经退行性疾病(如阿尔茨海默氏症)中的临床应用。研究方法的新颖性HIP-CT成像方法使人脑成像的分辨率比目前最高分辨率的MRI扫描高出300倍,因此需要开发定制的计算方法来模拟大脑结构。这些成像数据在世界范围内是独一无二的,并将与临床MRI图像相关联,以改进健康和神经退行性病例中白质束定位和血管结构的现有模型。与EPSRC的战略和研究领域保持一致该项目与EPSRC医疗保健技术主题的优先事项保持一致,特别是围绕新的成像技术。这项研究将支持先进的人工智能工具的开发,用于数据处理,理解复杂的成像数据,理解潜在的病理,并监测神经退行性疾病的进展。5.任何参与Chan Zuckerberg Initiative的公司或合作者
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Resolution算法的交互时态逻辑自动验证机
- 批准号:61303018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A national eInfrastructure for high-resolution population spatial modelling
用于高分辨率人口空间建模的国家电子基础设施
- 批准号:
LE220100028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Test and develop high resolution mapping and modelling methods to support inter-censal population estimates
测试和开发高分辨率绘图和建模方法以支持普查间人口估计
- 批准号:
2891457 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Future intensity of precipitation extremes over eastern Canada using very high-resolution modelling
使用超高分辨率模型计算加拿大东部未来极端降水强度
- 批准号:
RGPIN-2020-05631 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Super-resolution imaging, single cell analysis, and modelling approaches applied to the study of immune cell signaling and behaviour
超分辨率成像、单细胞分析和建模方法应用于免疫细胞信号传导和行为的研究
- 批准号:
RGPIN-2020-04820 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using Structural Systems Biology Modelling to Probe High-Resolution Design Principles of Protein Networks
利用结构系统生物学模型探索蛋白质网络的高分辨率设计原理
- 批准号:
RGPIN-2019-05952 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High-resolution multiscale modelling of pandemics: COVID-19 and beyond
流行病的高分辨率多尺度建模:COVID-19 及其他疾病
- 批准号:
DP220101688 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
COVID-19: Bayesian inference for high resolution stochastic modelling for the UK
COVID-19:英国高分辨率随机建模的贝叶斯推理
- 批准号:
EP/W011840/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
High-resolution semi-parametric Bayesian modelling of human contact dynamics.
人类接触动力学的高分辨率半参数贝叶斯建模。
- 批准号:
2602755 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Future intensity of precipitation extremes over eastern Canada using very high-resolution modelling
使用超高分辨率模型计算加拿大东部未来极端降水强度
- 批准号:
RGPIN-2020-05631 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using Structural Systems Biology Modelling to Probe High-Resolution Design Principles of Protein Networks
利用结构系统生物学模型探索蛋白质网络的高分辨率设计原理
- 批准号:
RGPIN-2019-05952 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual