Interpretable statistical machine learning approaches for the molecular investigation of cancer
用于癌症分子研究的可解释统计机器学习方法
基本信息
- 批准号:2728935
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ovarian cancer is the 6th most common cancer for women in the UK. High-grade serous ovarian cancer (HGSOC) accounts for most cases, with a low 30% 5-year survival. The two main factors that contribute to this poor prognosis are: 1) late diagnosis of the disease, and 2) a high proportion of relapse despite initial response to treatment. The latter suggests that small populations of treatment resistant cancer cells may exist that can repopulate the disease. It is therefore of interest to identify such cancer cells and understanding how they different from other cancer cell types that might also affect why patients respond differently to treatment and differ in how long they survive. The molecular basis of ovarian cancer can be unravelled using a plethora of modern technologies such as sequencing and imaging at both bulk tissue and single-cell level. This is creating an unprecedented opportunity to use a data-driven approach to enable the precise characterisation of ovarian cancer and the possibility of developing targeted treatment options. However, to make effective use of the molecular data, robust analytical approaches are required to characterise cell populations of interest (particularly rare ones) and to integrate heterogeneous data modalities.This research aims to:1) To develop a robust and interpretable approach to identify rare cell populations from high-dimensional molecular data,2) To develop a statistical framework for the integration of multimodal data for survival prediction.Novelty of the research methodology We will develop statistical techniques that are specifically designed to identify rare cell types from molecular data. Classical statistical discovery methods tend to be biased toward the most common cell populations as there is more information about them. There is often a penalty associated with suggesting a rare cell type as these may not be real so a balance must be struck between proposing new cell types and the chance that these proposals may turn out to be false after further examination. We will develop techniques that allow us to control the balance between these competing needs allowing experimental scientists to adjust expectations based on the level of acceptable risk available to them. We will also develop techniques to combine different sources of data such as clinical record, magnetic resonance imaging and whole genome sequencing. These techniques will examine a specific limitation of existing approaches which typically do not account for the information imbalance between different types of data. For example, a clinical record might contain 30-40 data entries describing a patient's condition, but a whole genome sequence might reveal 10,000s of cancer mutations. If naively combined, the sheer number of mutations can overwhelm the importance of the clinical information, which can cause biases in analysis and interpretation, for instance, by failing to consider important socioeconomic or ethnicity information. We will develop approaches that equalise the important placed on different sources of data such that they can be combined in a fair and equitable way. This project falls within the EPSRC Healthcare Technologies research area' where "Optimising disease prediction, diagnosis and intervention" is one of the themes or research areas listed on this website.It will create new methods for analysing large data sets, underpin patient-specific predictive models, and support the identification of opportunities for prevention of disease or its recurrence.This project will involve a collaboration with the Oxford-based cancer immunology company, Singula Bio.
卵巢癌是英国女性第六大常见癌症。高级别浆液性卵巢癌(HGSOC)占大多数病例,5年生存率低至30%。导致这种不良预后的两个主要因素是:1)疾病的诊断较晚,2)尽管最初对治疗有反应,但复发率很高。后者表明,可能存在少量耐药癌细胞,它们可以重新繁殖这种疾病。因此,识别这些癌细胞并了解它们与其他类型的癌细胞有何不同,这可能也会影响患者对治疗的不同反应以及存活时间的不同。卵巢癌的分子基础可以利用大量的现代技术,如测序和成像,在大组织和单细胞水平上解开。这创造了一个前所未有的机会,使用数据驱动的方法来实现卵巢癌的精确特征,并有可能开发有针对性的治疗方案。然而,为了有效地利用分子数据,需要强大的分析方法来表征感兴趣的细胞群(特别是罕见的细胞群)并整合异构数据模式。本研究旨在:1)建立一种可靠且可解释的方法,从高维分子数据中识别稀有细胞群体;2)建立一个统计框架,整合多模态数据进行生存预测。研究方法的新颖性我们将开发专门用于从分子数据中识别稀有细胞类型的统计技术。经典的统计发现方法往往偏向于最常见的细胞群,因为有更多关于它们的信息。提出一种罕见的细胞类型通常会受到惩罚,因为这些细胞类型可能不是真的,所以必须在提出新的细胞类型和这些建议在进一步检查后可能被证明是错误的机会之间取得平衡。我们将开发技术,使我们能够控制这些相互竞争的需求之间的平衡,使实验科学家能够根据他们可接受的风险水平调整预期。我们还将开发技术,以结合不同来源的数据,如临床记录,磁共振成像和全基因组测序。这些技术将检查现有方法的具体限制,这些方法通常没有考虑到不同类型数据之间的信息不平衡。例如,一个临床记录可能包含30-40个描述患者病情的数据条目,但一个完整的基因组序列可能会揭示成千上万的癌症突变。如果天真地结合在一起,突变的数量可能会压倒临床信息的重要性,这可能会导致分析和解释中的偏差,例如,由于没有考虑重要的社会经济或种族信息。我们将制定办法,平等对待不同数据来源的重要性,使它们能够以公平和公正的方式结合起来。该项目属于EPSRC医疗技术研究领域,其中“优化疾病预测、诊断和干预”是本网站列出的主题或研究领域之一。它将创造分析大型数据集的新方法,巩固针对特定患者的预测模型,并支持确定预防疾病或疾病复发的机会。该项目将与牛津癌症免疫学公司Singula Bio合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886365 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886852 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
- 批准号:
10656870 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
- 批准号:
10714602 - 财政年份:2023
- 资助金额:
-- - 项目类别: