Generating Materials with Complex, Life-like Morphologies

生成具有复杂、逼真形态的材料

基本信息

  • 批准号:
    2741927
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This project will couple experiments and mathematical modelling to explore the self-assembly of inorganic microstructures with complex, life-like morphologies. Living systems provide a unique inspiration for the design and construction of new materials. With complex, three-dimensional morphologies and hierarchical structures, biominerals such as bones, teeth and seashells exhibit properties unparalleled by their synthetic counterparts. A key feature of these biological structures is that they often form by assembly-based mechanisms under far-from equilibrium conditions. In exciting new results we have recently shown that the commercially-available polyelectrolytes can direct the formation of inorganic microstructures with remarkable morphologies including spirals, cones and twisted tapes in aqueous solution. This is achieved using a simple one-pot method. Notably, we have produced comparable structures for a range of compounds including calcium carbonate and strontium sulfate. Inorganic structures that have morphologies reminiscent of living, biological materials have been termed "biomorphs". However, to date, biomorphs have only been generated in the presence of silicate ions - and have been restricted to metal carbonates. Our methodology is therefore far more general.This system will now be investigated in depth to explore the influence of the reaction conditions, including the inorganic compound, organic additives, solution concentrations and reaction times on the product morphologies. Experimental work will generate "morphology maps" that relate the experimental conditions to the structures formed, and explore the range of morphologies that can be formed by this self-assembly route. A wide range of insoluble inorganic compounds and organic polymers will be screened, as well as solution conditions. The morphologies and structures of the product crystals will be characterised using optical microscopy, scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction. In this way we will be able to build an understanding of how the crystal chemistry and solution conditions dictate the structures formed.The mechanisms by which these structures form is of significant interest and will be determined by characterising the evolving structures using electron microscopy and analytical techniques. We will use cryo-TEM to investigate the early stages of formation of these structures, where this technique allows us to preserve and thus characterise the structures as they are in the solution. Cryo-electron tomography will be used to image the internal structures of these hierarchical structures in 3D. We will also explore liquid cell (LC-TEM) to actually watch the process of formation of these structures in real time in solution with nanometre resolution. This would represent the first time anyone has been able to study in situ the formation of such structures.In parallel with the experimental studies we will also develop mathematical models that can rationalise the formation of these microstructures by modelling the interdependence of concentration profiles, diffusion rates, reaction rates and curvature of the structures. The formation of silica/ metal carbonate biomorphs has been proposed to derive from an autocatalytic co-precipitation cycle, that occurs due to alternating local changes in pH that occur when metal carbonate, and then silica forms. We have no silicate in our system, and can form these structures from compounds whose formation does not involve a pH change. This suggests a much more general underlying mechanism. This project will ultimately deliver a framework that will allow us to predict and control the synthesis of morphologically-complex microstructures by design, where inorganic materials with complex forms are important in applications including next-generation optical metamaterials.
该项目将结合实验和数学模型来探索具有复杂、类生命形态的无机微观结构的自组装。生命系统为新材料的设计和建造提供了独特的灵感。骨骼、牙齿和贝壳等生物矿物具有复杂的三维形态和分层结构,具有合成物所无法比拟的特性。这些生物结构的一个关键特征是,它们往往是在远离平衡条件下通过基于装配的机制形成的。在令人兴奋的新结果中,我们最近表明,商业上可用的聚电解质可以在水溶液中指导具有显着形态的无机微结构的形成,包括螺旋,锥体和扭曲带。这是通过简单的一锅法实现的。值得注意的是,我们已经为包括碳酸钙和硫酸锶在内的一系列化合物生产了类似的结构。无机结构的形态让人想起活的生物材料,被称为“生物形态”。然而,到目前为止,生物形态只在硅酸盐离子存在的情况下产生,而且仅限于金属碳酸盐。因此,我们的方法要普遍得多。现在我们将对该体系进行深入的研究,以探索反应条件,包括无机化合物、有机添加剂、溶液浓度和反应时间对产物形貌的影响。实验工作将生成“形态图”,将实验条件与形成的结构联系起来,并探索通过这种自组装路线可以形成的形态范围。广泛的不溶性无机化合物和有机聚合物将被筛选,以及溶液条件。产品晶体的形态和结构将使用光学显微镜,扫描电子显微镜(SEM),拉曼光谱和x射线衍射进行表征。通过这种方式,我们将能够建立对晶体化学和溶液条件如何决定结构形成的理解。这些结构形成的机制是非常有趣的,将通过使用电子显微镜和分析技术表征不断演变的结构来确定。我们将使用低温透射电镜来研究这些结构形成的早期阶段,这项技术使我们能够保存并表征这些结构在溶液中的特征。低温电子断层扫描将用于对这些分层结构的内部结构进行三维成像。我们还将探索液相电池(LC-TEM),以纳米分辨率在溶液中实时观察这些结构的形成过程。这将是第一次有人能够在现场研究这种结构的形成。在实验研究的同时,我们还将开发数学模型,通过模拟这些结构的浓度分布、扩散速率、反应速率和曲率的相互依赖,使这些微观结构的形成合理化。二氧化硅/金属碳酸盐生物形态的形成源于自催化共沉淀循环,这是由于当金属碳酸盐形成时,局部pH值发生交替变化,然后二氧化硅形成。在我们的系统中没有硅酸盐,可以通过不涉及pH值变化的化合物形成这些结构。这表明了一种更为普遍的潜在机制。该项目最终将提供一个框架,使我们能够通过设计预测和控制形态复杂的微结构的合成,其中具有复杂形式的无机材料在应用中很重要,包括下一代光学超材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CDS&E: A Deep Learning Framework for Evaluation of Electron Microscopy Images of Chemically-Complex Metallic Materials
CDS
  • 批准号:
    2311104
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Complex Electronic Structures for Thermoelectric Energy Materials
热电能源材料的复杂电子结构
  • 批准号:
    2887654
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
  • 批准号:
    2310725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of innovative inorganic antiviral materials using complex oxides and the construction of their activity design method
利用复合氧化物开发创新无机抗病毒材料及其活性设计方法的构建
  • 批准号:
    23H01680
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
2023 Complex Active and Adaptive Materials Systems: Optimizing the Synergy Between Architecture, Non-Equilibrium Processes and Materials
2023 复杂的活性和自适应材料系统:优化建筑、非平衡过程和材料之间的协同作用
  • 批准号:
    2246034
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Understanding Strain and Strain Relaxation Mechanisms in Complex Two-Dimensional Materials
职业:了解复杂二维材料中的应变和应变松弛机制
  • 批准号:
    2239545
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
  • 批准号:
    2310724
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Characterization and Mapping of Mechanical Properties in Complex Materials and Geometries
复杂材料和几何形状中机械性能的表征和绘图
  • 批准号:
    RGPIN-2019-06660
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A Spectroscopic Journey through Time and Space in Complex Electronic Materials
复杂电子材料中穿越时空的光谱之旅
  • 批准号:
    RGPIN-2019-05922
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Extended DFT+U method: application to analysis of complex doping effects, methodological developments and materials design.
扩展 DFT U 方法:应用于复杂掺杂效应分析、方法开发和材料设计。
  • 批准号:
    22K05019
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了