Identifying and alleviating sensitivity of neural networks to distribution shift in medical imaging
识别和减轻神经网络对医学成像分布变化的敏感性
基本信息
- 批准号:2742539
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advances in machine learning, particularly the development of effective deep neural networks, have the potential to transform medical image analysis and consequently improve diagnosis and treatment of pathology. The great value of machine-learning based tools is in accelerating and improving effectiveness of common and tedious tasks required within clinical workflows, such as by facilitating detection or delineation of an abnormality in a patient's scan. However, wide deployment of neural networks for clinical application is hindered by challenges in ensuring reliable of these algorithms. Specifically, current methodologies for developing and training machine learning algorithms commonly assume that the data used for training the model will have the same characteristics as the data on which the model will be applied. If this assumption does not hold, a phenomenon known technically as "data distribution shift", then model performance is likely to degrade. Such "distribution shift" is unavoidable due to the nature of medical imaging workflows. For example, images could be acquired using scanners from different manufacturers, using different acquisition protocols or from different populations groups. Due to the high risk associated with healthcare applications, every false prediction can be disastrous for an individual patient. Therefore, in order to enable machine learning deliver its potential, it is necessary to develop methodologies for identifying what data characteristics may lead to degradation of model's performance, and techniques for alleviating associated model sensitivity, to ensure reliable and safe deployment of machine learning based tools in clinical workflows.This research will investigate what characteristics of the imaging data cause the predictive performance of ML models to degrade when they differ from the characteristics of data used during training, and develop methods to alleviate such sensitivity. One technical objective of this project is to develop novel generative networks that can learn the distribution of characteristics in the training and testing data. Generative networks are then capable of generating new, synthetic data, with the characteristics that the user specifies. This property can be used to interpret and identify what types of imaging characteristics degrade performance of another model of interest. Moreover, we will use such generative models for alleviating sensitivity to such characteristics. For example, generative models can be used to create synthetic images with characteristics similar to those of data that are acquired from the environment of deployment. These can then be used for training more robust models, with increased capability to make predictions outside the training data. Moreover, this research aims to develop methods that can enable a neural network to autonomously adapt its internal representation after deployment, to be more optimal for the specific data that it processes, rather than those it has been trained on. This would allow more optimal performance without the expense of retraining the model or re-collecting data that match those from the environment that a tool is aimed to be deployed in. Ultimately, the project will develop the next generation of frameworks and techniques for developing more transparent and reliable machine-learning based tools for healthcare. This project applies advanced computer science technologies to medical applications. It tries to optimise disease diagnosis, decision making and treatment using algorithms that extract useful information from medical data. Therefore this project falls within the EPSRC Medical Imaging research area and the Healthcare Technologies theme.
机器学习的进步,特别是有效的深度神经网络的发展,有可能改变医学图像分析,从而改善病理学的诊断和治疗。基于机器学习的工具的巨大价值在于加速和提高临床工作流程中所需的常见和繁琐任务的有效性,例如通过促进检测或描绘患者扫描中的异常。然而,神经网络在临床应用中的广泛部署受到确保这些算法可靠性的挑战的阻碍。具体而言,当前用于开发和训练机器学习算法的方法通常假设用于训练模型的数据将具有与模型将被应用于其上的数据相同的特征。如果这一假设不成立,这种现象在技术上被称为“数据分布偏移”,那么模型性能可能会下降。由于医学成像工作流程的性质,这种“分布偏移”是不可避免的。例如,可以使用来自不同制造商的扫描仪、使用不同采集协议或来自不同人群的扫描仪来采集图像。由于与医疗保健应用相关的高风险,每一个错误的预测对个体患者来说都可能是灾难性的。因此,为了使机器学习发挥其潜力,有必要开发用于识别哪些数据特征可能导致模型性能下降的方法,以及用于减轻相关模型敏感性的技术,确保在临床工作流程中可靠和安全地部署基于机器学习的工具。本研究将调查成像数据的哪些特征导致ML的预测性能当模型与训练过程中使用的数据特征不同时,模型会降级,并开发减轻这种敏感性的方法。该项目的一个技术目标是开发新的生成网络,可以学习训练和测试数据中的特征分布。然后,生成网络能够生成具有用户指定特征的新的合成数据。此属性可用于解释和识别什么类型的成像特性会降低另一个感兴趣模型的性能。此外,我们将使用这种生成模型来减轻对这些特征的敏感性。例如,生成模型可以用于创建具有与从部署环境获取的数据的特征类似的特征的合成图像。然后,这些可以用于训练更强大的模型,提高在训练数据之外进行预测的能力。此外,这项研究旨在开发一种方法,使神经网络能够在部署后自主调整其内部表示,使其更适合于它处理的特定数据,而不是那些已经训练过的数据。这将允许更优化的性能,而无需重新训练模型或重新收集与工具部署环境相匹配的数据。最终,该项目将开发下一代框架和技术,以开发更透明、更可靠的基于机器学习的医疗保健工具。该项目将先进的计算机科学技术应用于医疗应用。它试图使用从医疗数据中提取有用信息的算法来优化疾病诊断、决策和治疗。因此,该项目属于EPSRC医学成像研究领域和医疗保健技术主题的福尔斯范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Can Labor Policy Help Alleviating Social Ills?
劳动政策能否缓解社会弊病?
- 批准号:
24K16370 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Alleviating age-related memory impairment through proteasome stimulation
通过蛋白酶体刺激减轻与年龄相关的记忆障碍
- 批准号:
10811380 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Alleviating Mitochondrial Dysfunction in PERK-deficient Neurodegenerative Disease
缓解 PERK 缺陷神经退行性疾病中的线粒体功能障碍
- 批准号:
10680235 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multifaceted role of MG53 in alleviating neuromuscular function decline in ALS
MG53 在缓解 ALS 神经肌肉功能衰退中的多方面作用
- 批准号:
10681888 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Alleviating carbohydrate counting in adults with type 1 diabetes with weekly Semaglutide injections added to an automated insulin delivery with Lyumjev
通过每周注射索马鲁肽并添加 Lyumjev 自动胰岛素输送来减少 1 型糖尿病成人患者的碳水化合物计数
- 批准号:
10636689 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Alleviating Human Pain and Anxiety by Using a Cyber-Physical Agent System
使用网络物理代理系统减轻人类的痛苦和焦虑
- 批准号:
22K19784 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Causal Generative Modelling for Identifying and Alleviating Biases of Neural Networks in Medical Imaging
用于识别和减轻医学成像中神经网络偏差的因果生成模型
- 批准号:
2721977 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
MICA: Understanding and alleviating hearing disability: A cognitive-behavioural model of miscommunication in everyday conversation
MICA:理解和减轻听力障碍:日常对话中沟通不畅的认知行为模型
- 批准号:
MR/X003620/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Alleviating herbicide damage to crops by using fulvate and manganese
使用黄腐酸盐和锰减轻除草剂对作物的损害
- 批准号:
LP210200140 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Linkage Projects