Materials Discovery in Charge Transfer Complexes for Thermoelectricity

热电电荷转移复合物中的材料发现

基本信息

  • 批准号:
    2745853
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Thermoelectric devices are electronic chips that turn differences in heat into electricity and vice versa. Most people will have never heard of thermoelectric (TE) devices as they are used very little. Practical TE devices could generate green electricity and make refrigeration less polluting. This cant happen currently as room temperature thermoelectric materials are either too expensive or too inefficient. A 1.4% efficient TE material applied to the 40C waste steam generated by all UK thermal power plants in 2021 could have generated 5TWh of electricity per year, enough for 2 million, 8% of all, UK homes at a wholesale value of £900M per year (UK average price June 22 June 23). Organic TE materials are likely to reduce the cost of TE devices due to their atom abundance and low energy processing. Both negative and positive type (like the ends on a battery) TE materials are needed to make devices. Organic p-type materials have seen good progress, but n-types are much rarer, have lower performance, and are easily decomposed by oxidation in air. A recent discovery of a family of metal halide organic complexes with a generic structure M(II)Br2(Haloaniline)2 has reported high (2000-3900 S cm-1) electrical conductivity and power factors, a measure of TE performance (1500 3700 W m1 K2) an order of magnitude greater than the research benchmark of PEDOT:PSS polymer 200 W m1 K2.This new family's constituent atoms are all earth-abundant, comprised of Cu, Zn, Br, I, C and N.Currently, the processing solvent is toxic, but there is potential for developing safer and less environmentally harmful solvent methods. Crucially, this family reports high stability in air and water for year timescales experimentally and theoretically. And maximum operating temperatures between 100 - 200C and good performance one-fifth to half as good as the best materials available. This class of materials is underexplored as TE materials, and many questions about how to boost their performance remain. This project will help to develop methods for their production, discover new materials in the family and explore methods for tailoring their performance. The early goal will be to replicate the leading research results via vacuum drying. If this method reliably gives films that can be analysed, then a library of different organic molecules with different halide substituents and Pi-conjugated systems will be developed. These experiments will help us understand the molecule's effect on how we can make the materials better. If data generation is fast and reliable, the use of artificial intelligence could help us improve the materials. If the vacuum drying technique does not provide reliable deposition of high-quality films, then alternative drying methods will be investigated. Hot substrates to evaporate off the solvent, using a solvent that washes away the solvent but leaves the materials in place. Ambient temperature washing is favourable as it avoids thermal stress and has lower energy requirements. Cosolvent techniques may give finer control of the crystallisation. Once films are produced, they will be validated for homogeneity and thickness with Optical microscopy, Electron microscopy, and profilometry. The composition of the deposited films will be determined by grazing incidence x-ray diffraction. Previous studies have not included structural measurements of the cast films, only materials derived by mechanochemistry and crystallisation. Analysis of the cast film will reveal any differences. If possible, the materials will be cast onto the silicon nitride measurement chips of a thin film analyser. This system can give basic thermoelectric characterisation. This system's speed and high reliability will reduce uncertainty and time per sample compared to conventional measurements. If this system is unsuitable, methods will be developed using silica slides with thermally evaporated conductive tracks for 4 terminal measurements.
热电装置是一种电子芯片,可以将温差转化为电能,反之亦然。大多数人从未听说过热电(TE)设备,因为它们很少使用。实用的热电装置可以产生绿色电力,减少制冷污染。这在目前是不可能发生的,因为室温热电材料要么太贵,要么效率太低。2021年,英国所有热电厂产生的40 C废蒸汽中使用的1.4%效率的TE材料每年可以产生5 TWh的电力,足以满足200万英国家庭的8%,每年批发价值为9亿英镑(英国平均价格6月22日6月23日)。有机TE材料由于其原子丰度和低能量加工而可能降低TE器件的成本。制造设备需要负极和正极(如电池两端)TE材料。有机p型材料已经取得了很好的进展,但n型材料要稀有得多,性能较低,并且在空气中容易被氧化分解。一类具有通式结构M(II)Br 2的金属卤化物有机配合物的新发现(卤代苯胺)2已报告高(2000-3900 S cm-1)电导率和功率因数,测量TE性能(1500 3700 W m1 K2)比PEDOT的研究基准大一个数量级:PSS聚合物200 W m1 K2.这个新家族的组成原子都是地球上丰富的,由Cu、Zn、Br、I、C和N组成。目前,加工溶剂是有毒的,但是存在开发更安全和对环境危害更小的溶剂方法的潜力。至关重要的是,该系列在实验和理论上在空气和水中具有多年的高稳定性。最高工作温度在100 - 200 ℃之间,性能良好,是现有最佳材料的五分之一到一半。这类材料作为TE材料尚未得到充分研究,关于如何提高其性能的许多问题仍然存在。该项目将有助于开发其生产方法,发现该系列中的新材料,并探索定制其性能的方法。早期的目标是通过真空干燥复制领先的研究成果。如果这种方法可靠地给出可以分析的薄膜,那么将开发具有不同卤化物取代基和π共轭系统的不同有机分子的库。这些实验将帮助我们了解分子对我们如何使材料更好的影响。如果数据生成快速可靠,人工智能的使用可以帮助我们改进材料。如果真空干燥技术不能提供可靠的高质量薄膜沉积,则将研究替代干燥方法。加热基板以蒸发掉溶剂,使用溶剂将溶剂洗掉,但将材料留在原位。环境温度洗涤是有利的,因为它避免了热应力并且具有较低的能量需求。共溶剂技术可以更好地控制结晶。一旦生产薄膜,将使用光学显微镜、电子显微镜和轮廓测定法对其均匀性和厚度进行验证。沉积膜的组成将通过掠入射X射线衍射来确定。以前的研究没有包括流延膜的结构测量,只有机械化学和结晶衍生的材料。对流延膜的分析将揭示任何差异。如果可能的话,材料将被浇铸到薄膜分析仪的氮化硅测量芯片上。该系统可以给出基本的热电特性。与传统测量相比,该系统的速度和高可靠性将减少每个样本的不确定性和时间。如果该系统不适用,将开发使用具有热蒸发导电轨道的二氧化硅载玻片进行4端子测量的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge Control
UCI MRSEC:通过原子级结构设计和电荷控制进行材料发现
  • 批准号:
    2011967
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Development of Ce(IV) based Charge-neutral Layered Perovskite Nanosheets and Discovery of Its Photo-functionality
Ce(IV)基电荷中性层状钙钛矿纳米片的开发及其光功能的发现
  • 批准号:
    20K15106
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Discovery of Eu3+-activated red-emitting phosphor using charge-transfer transition of transition metals as blue-light absorber
利用过渡金属的电荷转移跃迁作为蓝光吸收剂发现 Eu3 激活红光荧光粉
  • 批准号:
    17K14813
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    9001355
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: omics discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的组学发现
  • 批准号:
    10669243
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    8402649
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    8810073
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    9977252
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    8023579
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CHARGE consortium: gene discovery for CVD and aging phenotypes
CHARGE 联盟:CVD 和衰老表型的基因发现
  • 批准号:
    8230469
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了