Taub-Bolt and Taub-NUT solutions and their behaviour under the Ricci flow
Taub-Bolt 和 Taub-NUT 解及其在 Ricci 流下的行为
基本信息
- 批准号:2747335
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Context:Taub-Bolt and Taub-NUT solutions are a subclass of Ricci flat metrics on a manifold, and can appear on manifolds of different dimensions. These metrics appear in physics in the study of Black Holes. However here we are talking about Euclidean black holes since a metric is used rather than a Lorentzian metric that is used in General Relativity. Maybe the thesis would be of use to physicists.Details of the Thesis:In dimension four and assuming certain symmetries gives rise to a class of Taub-Bolt and Taub-NUT solutions. The Bolt and the NUT refer to the topology of the manifold. The Taub-Bolt solutions are metrics on two-dimensional complex projective space minus a four-dimensional ball, making it a manifold with boundary, whereas the Taub-NUT solutions are on the closed four-dimensional ball. The Taub-Bolt solutions can be stable or unstable under the Ricci flow, while the Taub-NUT solutions are stable. There has been some work done by Holzegel, Schmelzer and Warnick that suggests that if we perturb the unstable Taub-Bolt solutions, under the Ricci flow, the metric will flow to either a stable Taub-Bolt or the Taub-NUT solution. As mentioned before, the Taub-NUT solution however is on a different manifold than that of the Taub-Bolt solutions. The Ricci flow must therefore be changed to Ricci flow with surgery. This involves following the Ricci flow for a period of time, pausing to change the topology (perform surgery), then continuing the Ricci flow on the different manifold. The use of surgery is used because the Ricci flow has a finite blow up time. Hamilton and Perelman came up with Ricci flow with surgery to continue the flow beyond what is normally possible.The study of the flow beyond stability questions so far is via computational methods. The question of long-time existence and convergence of the flow has not yet been answered. The thesis would be to answer this via analysis of the partial differential equations that arise (i.e the Ricci flow equation). More generally, I would explore the behaviour of perturbations of Taub-Bolt and Taub-NUT solutions via analytic means.This project falls within the EPSRC Geometry and Topology research area.
背景:Taub-Bolt和Taub-NUT解决方案是流形上的Ricci平坦度量的子类,可以出现在不同维度的流形上。这些度量值出现在研究黑洞的物理学中。然而,我们在这里谈论的是欧几里得黑洞,因为我们使用的是度规,而不是广义相对论中使用的洛伦兹度规。也许这篇论文会对物理学家有所帮助。论文细节:在四维空间中,假设某些对称性产生一类Taub-Bolt解和Taub-NUT解。螺栓和螺母指的是歧管的拓扑。Taub-Bolt解是二维复射影空间上的度量,减去一个四维球,使它成为一个有边界的流形,而Taub-NUT解是在闭四维球上的。在Ricci流下,Taub-Bolt解可以是稳定的,也可以是不稳定的,而Taub-NUT解是稳定的。Holzegel,Schmelzer和Warnick的一些工作表明,如果我们扰动不稳定的Taub-Bolt解,在Ricci流下,度规将流向稳定的Taub-Bolt解或Taub-NUT解。如前所述,Taub-NUT解决方案与Taub-Bolt解决方案位于不同的流形上。因此,瑞奇血流必须通过手术改变为瑞奇血流。这涉及到跟随Ricci流一段时间,暂停以改变拓扑(执行手术),然后在不同的流形上继续Ricci流。使用外科手术是因为Ricci流有一个有限的爆炸时间。汉密尔顿和佩雷尔曼提出了Ricci Flow,通过手术使流动继续超出正常可能的范围。到目前为止,对超越稳定性问题的流动的研究是通过计算方法进行的。这股潮流的长期存在和汇聚的问题尚未得到回答。本文将通过对由此产生的偏微分方程(即Ricci流动方程)的分析来回答这个问题。更广泛地说,我将通过解析方法探索Taub-Bolt和Taub-NUT解的扰动行为。这个项目属于EPSRC几何和拓扑学研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于可视化检测方法研究Bolt区对Trametes coccinea AFB1降解酶催化性能的影响机制
- 批准号:31802103
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design a Double-Bolt Lock to Control Cancer Cell Growth
设计双螺栓锁来控制癌细胞生长
- 批准号:
443354 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants
Physics-informed data-driven loose bolt identification
基于物理的数据驱动的松动螺栓识别
- 批准号:
2759856 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Versatile design and construction method using high-strength bolt friction joints applying enlarged and slotted holes
采用扩孔和槽孔的高强度螺栓摩擦接头的多功能设计和施工方法
- 批准号:
19H02288 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluation of sectional forces transfer and establishment of a design method for the combined method of high-strength bolt friction joint and adhesive bonding
高强螺栓摩擦连接与粘接组合方法的截面力传递评估及设计方法建立
- 批准号:
19K04585 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Method of retrofitting a corroded high-strength bolt friction-type joint without using a temporary member
不使用临时构件改造腐蚀高强螺栓摩擦式接头的方法
- 批准号:
19K04582 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open-cohort designs for cluster-randomised trials in institutional settings: A methodology bolt-on to DCM-EPIC
机构环境中整群随机试验的开放队列设计:DCM-EPIC 的附加方法
- 批准号:
MR/P026761/1 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grant
Evaluation of the electromagneto-mechanical characteristics of the magnetostrictive bolt and development of the devices using magnetostrictive bolt
磁致伸缩螺栓的电磁机械特性评估及磁致伸缩螺栓装置的开发
- 批准号:
18K13654 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Resin grouted rock bolt support behaviour under shear loading
剪切载荷下树脂灌浆锚杆支护性能
- 批准号:
499953-2016 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
A study on the development for measuring system of bolt axial force using image measurement
图像测量螺栓轴力测量系统的研制
- 批准号:
17K06532 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of strength of high-strength bolted joint with filled bolt holes by resin
树脂填充螺栓孔高强螺栓接头强度评价
- 批准号:
16K06479 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)