Singularities of punctual Hilbert schemes
正时希尔伯特方案的奇点
基本信息
- 批准号:2748266
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This thesis will explore a celebrated geometric space, called the Hilbert scheme of points - associated to some much studied singular surfaces. The Hilbert scheme of points associated to a smooth surface is one of the most beautiful geometric objects to be studied in algebraic geometry and geometric representation theory. Many of the strongest results about this space go back to the work of Fogarty from the late 60s and early 70s. Put simply, the Hilbert scheme, which on the face of it can be arbitrary complicated, turns out to be a smooth space when the surface itself is smooth. That work underpinned many advances in the subsequent decades.On the other hand, remarkably little is known for the Hilbert scheme of points associated to singular surfaces. Recent work of Craw and collaborators [Craw-Gamelgaard-Gyenge-Szendroi, Alg. Geom. 2021] established many key properties for the Hilbert scheme of points associated to the simplest family of singular surfaces; these surfaces, whose study goes back to the 1930s, have many names, including Kleinian singularities. Their breakthrough came in realising these Hilbert schemes as examples of quiver varieties by applying relatively recent work of [Bellamy-Craw, Invent. Math. 2018]. The concrete goal of the thesis is to generalise these techniques to study a family of singular surfaces, known as the crepant partial resolutions of the Kleinian singularities. The expectation is that one can formulate a common statement that describes the Hilbert scheme of points on the Kleinian singularities, all of their partial crepant resolutions, and a natural smooth surface associated to the Kleinian surface; put simply, we aim to unify the classical description of Fogarty with the recent work of Craw et al., leading to a complete and uniform description of the Hilbert schemes of points on the family of all partial crepant resolutions of Kleinian singularities.Initially, Ruth with get to grips with the study of Mori Dream Spaces and quiver varieties, putting her in a position to come to terms with the work of [Craw-Gamelgaard-Gyenge-Szendroi, Alg. Geom. 2021]. The challenge then is to take a parameter introduced in that work and allow it to vary more freely, thereby probing not only the Hilbert scheme of points on the Kleinian singularity, but more generally, all partial crepant resolutions of that singular space. A key goal that Ruth will consider in parallel is to decide whether or not the Hilbert scheme of points on a Kleinian singularity is normal (which means roughly that it is not too badly singular). This question is still open, and there are some natural thought experiments that one can carry out to help settle this question.
本文将探讨一个著名的几何空间,称为希尔伯特方案的点-与一些研究很多奇异曲面。光滑曲面上的点的希尔伯特格式是代数几何和几何表示论中最美丽的几何对象之一。关于这个空间的许多最强有力的结果可以追溯到Fogarty在60年代末和70年代初的工作。简而言之,表面上可以是任意复杂的希尔伯特方案,当表面本身是光滑的时,它就变成了一个光滑空间。这项工作在随后的几十年里支撑了许多进展。另一方面,对与奇异曲面相关的点的希尔伯特方案知之甚少。Craw和合作者的最新工作[Craw-Gamelgaard-Gyenge-Szendroi,Alg. Geom. 2021]建立了与最简单的奇异曲面族相关联的点的希尔伯特方案的许多关键性质;这些曲面的研究可以追溯到20世纪30年代,有许多名称,包括Kleinian奇点。他们的突破是通过应用[Bellamy-Craw,Invent. Math.2018]。论文的具体目标是推广这些技术来研究一个家庭的奇异表面,被称为crepant部分决议的Kleinian奇点。期望的是,人们可以制定一个共同的声明,描述了克莱因奇点上的点的希尔伯特方案,所有它们的部分crepant分辨率,以及与克莱因曲面相关的自然光滑曲面;简而言之,我们的目标是将Fogarty的经典描述与Craw等人的最近工作统一起来,导致一个完整的和统一的描述的希尔伯特计划的点的家庭的所有部分crepant决议的Kleinian奇点。最初,露丝与得到掌握的研究森梦空间和mri品种,把她放在一个位置来条款的工作[Craw-Gamelgaard-Gyenge-Szendroi,Alg. 2021]。然后,挑战是采取一个参数中引入的工作,并允许它更自由地变化,从而探测不仅是希尔伯特计划的点的Kleinian奇点,但更普遍的是,所有部分crepant决议的奇异空间。露丝将同时考虑的一个关键目标是决定克莱因奇点上的希尔伯特点集是否是正规的(这大致意味着它不是太严重的奇异)。这个问题仍然是开放的,有一些自然的思想实验,人们可以进行,以帮助解决这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship