A Data-Driven Multi-Fidelity Framework for Enhanced Flow Prediction Around Propeller and Fan Tips

数据驱动的多保真度框架,用于增强螺旋桨和风扇尖端的流量预测

基本信息

  • 批准号:
    2767103
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Due to the inherent assumptions and empiricism low-fidelity models for turbulent flow simulation are well known to lack the desired accuracy in complex flows involving separation, recirculation and reattachment. In particular, turbulent swirling flows around the propeller and rotor tips present significant challenges to most low-fidelity propeller models. On the other hand, high-fidelity scale-resolving methods such as the Large Eddy Simulation (LES) or Delayed Detached Eddy Simulation (DDES) are too computationally intensive for many-query computational tasks such as design optimization and uncertainty quantification. The proposed project aims to develop a novel, data-driven multi-fidelity framework for propeller modelling, consisting of a state-of-the-art adjoint-based flow assimilation technique and a machine learning (ML) model, with enhanced predictive capabilities for flows around propeller and rotor tips. We propose to enhance a low-fidelity propeller model by introducing correction terms. Using inverse design, the correction terms to the low-fidelity propeller model are tuned to reduce the discrepancies between the augmented model and a given high-fidelity sample. The input-output pairs between the mean flow features and correction terms computed in the flow assimilation process is used to train a convolutional neural network that is embedded in the solver to enhance its prediction of complex flows around propeller and fan tip regions without resorting to the computationally intensive scale-resolving simulations. In the proposed work, in addition to using high-fidelity simulations to study the flow physics and noise generation mechanisms, we propose to leverage the high-fidelity data to iteratively enhance the predictive accuracy of the ML-based propeller noise model constructed based on low-fidelity data, via transfer learning and active learning, and in so doing, realize a multi-fidelity data-driven framework for propeller noise prediction and minimization. In summary, the aim of this project is to develop a multi-fidelity framework for propeller performance prediction using advanced machine learning techniques, thus providing a key enabling technology the industry urgently need to efficiently predict and design high-efficiency low-noise propellers and fans. In the EPSRC landscape, this project aligns well with the research area of Fluid Dynamics and Aerodynamics within the research theme of Engineering. It is also well aligned with the 'AI for Science and Government' programme - one of the key strategic investments within the EPSRC Thematic Area of AI and Robotics.
由于固有的假设和不确定性,用于湍流模拟的低保真度模型在涉及分离、再循环和再附着的复杂流动中缺乏所需的精度。特别是,螺旋桨和转子尖端周围的湍流旋流对大多数低保真螺旋桨模型提出了重大挑战。另一方面,高保真尺度分辨方法,如大涡模拟(LES)或延迟分离涡模拟(DDES)是太多的查询计算任务,如设计优化和不确定性量化的计算密集型。该项目旨在开发一种用于螺旋桨建模的新型数据驱动的多保真度框架,包括最先进的基于伴随的流同化技术和机器学习(ML)模型,增强了螺旋桨和转子尖端周围流的预测能力。我们建议通过引入修正项来增强低保真度螺旋桨模型。使用逆设计,调整低保真螺旋桨模型的校正项,以减少增强模型和给定的高保真样本之间的差异。在流同化过程中计算的平均流特征和校正项之间的输入-输出对用于训练嵌入在求解器中的卷积神经网络,以增强其对螺旋桨和风扇尖端区域周围复杂流的预测,而无需求助于计算密集型尺度解析模拟。在所提出的工作中,除了使用高保真模拟来研究流动物理和噪声产生机制之外,我们还提出利用高保真数据来迭代地提高基于低保真度数据构建的基于ML的螺旋桨噪声模型的预测精度,通过迁移学习和主动学习,并在这样做的过程中,实现了用于螺旋桨噪声预测和最小化的多保真度数据驱动框架。总之,该项目的目的是使用先进的机器学习技术开发一个用于螺旋桨性能预测的多保真度框架,从而提供行业迫切需要的关键使能技术,以有效地预测和设计高效低噪声螺旋桨和风扇。在EPSRC的景观,该项目与工程的研究主题内的流体动力学和空气动力学的研究领域保持一致。它也与“AI for Science and Government”计划保持一致,这是EPSRC AI和机器人主题领域的关键战略投资之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
  • 批准号:
    BB/Y512540/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
  • 批准号:
    2145604
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Revolutionizing Canada's Aging Civil Infrastructure Assessment and Renewal: An Integrated, Multi-Scale, Remote Sensing, Data-Driven Approach
彻底改变加拿大老化的民用基础设施评估和更新:综合、多尺度、遥感、数据驱动的方法
  • 批准号:
    RGPIN-2021-03597
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Data-driven Pricing and Supply Chain Strategies for Online Multi-sided Platforms
在线多边平台数据驱动定价和供应链策略的设计与分析
  • 批准号:
    RGPIN-2019-06091
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    2227232
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
An extensible brain knowledge base and toolset spanning modalities for multi-species data-driven cell types
可扩展的大脑知识库和工具集,涵盖多物种数据驱动细胞类型的模式
  • 批准号:
    10686977
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Data-driven, Reliable, and Effective Additive Manufacturing using multi-BEAM technologies (DREAM BEAM)
使用多光束技术 (DREAM BEAM) 进行数据驱动、可靠且有效的增材制造
  • 批准号:
    EP/W037483/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution
协作研究:数据驱动的多波长环银河系革命方法
  • 批准号:
    2206055
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了