Vascular Scaffolds for Tissue Engineering
组织工程血管支架
基本信息
- 批准号:7143046
- 负责人:
- 金额:$ 21.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): There is currently no effective process to efficiently construct 3-D vascular networks in biocompatible substrate materials at organ-level size scales. Although considerable progress has been made in the development of microfabrication technologies to address these needs, these techniques are often costly and much too slow to be practical for mass-production. Unless significant advances in scaffold fabrication speed and feature resolution can be achieved, it will be virtually impossible to culture and grow engineered tissues suitable for organ replacement. This exploratory research program will address these needs by developing advanced fabrication technologies capable of rapidly and inexpensively constructing 3-D vascular networks incorporating channel sizes ranging from 100 nm to 1 mm within tissue scaffold materials in a single step at whole-organ substrate size scales. This work will be the first time these fabrication processes have been harnessed for the construction of vascular microchannel networks, and will greatly enhance the ability to construct tissue engineered organ replacements. These goals will be accomplished through the following Specific Aims. Aim 1: Establish an entirely new electrostatic discharge-based technology to enable fabrication of 3-D fractal microchannel networks in plastic substrates for use as tissue engineering scaffolds. Aim 2: Perform cell culture experiments both on the surface of and within the 3-D vascularized scaffolds constructed in Aim 1 in order to establish the optimal range of parameters for use in tissue engineering applications. Upon completion of this exploratory research program, an entirely new family of fabrication tools will be available for construction of functional 3-D vascular networks in biocompatible scaffold materials. This advanced fabrication technology will impact the field of tissue engineering by, for the first time, making it feasible to mass produce scaffolds for whole-organ replacement in virtually any laboratory. To our knowledge, these electrostatic discharge-based fabrication techniques have never been applied toward construction of vascular structures for tissue engineering applications. These tools will enable the development of a new generation of engineered organ replacements, suitable for mass production and offering an unprecedented capability to mimic the structure and function of their natural counterparts.
描述(由申请人提供):目前没有有效的工艺在生物相容性基质材料中以器官级尺寸规模有效构建3-D血管网络。尽管在开发微制造技术以满足这些需求方面已经取得了相当大的进展,但这些技术通常成本高并且太慢而不能用于大规模生产。除非在支架制造速度和特征分辨率方面取得重大进展,否则几乎不可能培养和生长适用于器官替代的工程组织。这项探索性研究计划将通过开发先进的制造技术来满足这些需求,这些技术能够快速,廉价地构建3D血管网络,在整个器官基质尺寸尺度下,在一个步骤中将通道尺寸从100 nm到1 mm纳入组织支架材料中。这项工作将是第一次利用这些制造过程来构建血管微通道网络,并将大大提高构建组织工程器官替代品的能力。这些目标将通过以下具体目标来实现。目标1:建立一种全新的基于静电放电的技术,使塑料基质中的三维分形微通道网络的制造成为可能,用作组织工程支架。目标二:在目标1中构建的3-D血管化支架的表面和内部进行细胞培养实验,以建立用于组织工程应用的最佳参数范围。在完成这项探索性研究计划后,一个全新的制造工具系列将可用于在生物相容性支架材料中构建功能性3D血管网络。这种先进的制造技术将首次影响组织工程领域,使其能够在几乎任何实验室中大规模生产用于整个器官置换的支架。据我们所知,这些基于静电放电的制造技术从未被应用于构建用于组织工程应用的血管结构。这些工具将使新一代工程器官替代品的开发成为可能,适用于大规模生产,并提供前所未有的能力来模仿其天然对应物的结构和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor M Ugaz其他文献
Victor M Ugaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor M Ugaz', 18)}}的其他基金
Microvesicle Isolation from Mycobacterium tuberculosis infected macrophage using
使用结核分枝杆菌感染的巨噬细胞分离微泡
- 批准号:
8768986 - 财政年份:2014
- 资助金额:
$ 21.2万 - 项目类别:
Symposia on Bio-MEMS for Genomic and Proteomic Analysis
用于基因组和蛋白质组分析的生物 MEMS 研讨会
- 批准号:
7058674 - 财政年份:2005
- 资助金额:
$ 21.2万 - 项目类别:
Enhanced Resolution in Microdevice Electrophoresis
提高微型器件电泳的分辨率
- 批准号:
6740088 - 财政年份:2001
- 资助金额:
$ 21.2万 - 项目类别:
Enhanced Resolution in Microdevice Electrophoresis
提高微型器件电泳的分辨率
- 批准号:
6805960 - 财政年份:2001
- 资助金额:
$ 21.2万 - 项目类别:
Enhanced Resolution in Microdevice Electrophoresis
提高微型器件电泳的分辨率
- 批准号:
6922879 - 财政年份:2001
- 资助金额:
$ 21.2万 - 项目类别: