Single-use, Multichannel Microfluidic Chips for CE

用于 CE 的一次性多通道微流控芯片

基本信息

项目摘要

The development of microfluidic technology and its application to biomedical assays has the potential to improve the quality and throughput of many widely used techniques. In particular, microchip-based capillary electrophoresis could yield faster analysis times with lower reagent consumption and greater ease of use than CE in silica capillaries. However, the glass microchips more commonly used are expensive to manufacture, and can be ill-suited to applications for which cross-contamination is an issue and single-use devices are desired. In contrast, plastic, or polymeric microfluidic chips can be manufactured with hot-embossing or injection molding techniques for pennies per chip. However, laser-induced fluorescence detection in polymeric microchips presents some unique challenges. Because the plastic substrate is substantially more fluorescent than freestanding silica capillaries, spatially selective detection is required to isolate the fluorescent signal originating from within the channel in order to achieve the desired sensitivity. In the past, this has required a confocal system, with the measurement of multiple channels achieved by mechanical scanning of the optical elements. We have developed and demonstrated a new scheme for sensitive, spatially selective and spectrally resolved laser-induced fluorescence detection from multiple microfluidic channels, and applied this scheme to 10 Hz five-color forensic DNA analysis in a polymeric microfluidic device. Free-space 488 nm laser excitation is spread into a collimated line with two cylindrical lenses and then split into multiple focused spots using an array of spherical plano-convex lenses with diameters equal to the microchannel spacing. At each excitation spot, a ball lens and an optical fiber is positioned underneath the microchannel. The spatial selectivity is achieved by using a high refractive index ball lens and a substantially smaller-diameter optical fiber positioned to obtain focused light from the channel. The detection optics can be freely positioned near each channel, placing minimal constraints on channel layout and design. The other ends of the optical fibers are formed into a 1-D array and directed onto the entrance slit of an imaging spectrograph. Analysis of standard DNA base-pair ladders in an eight-channel configuration shows comparable sensitivity to that obtained with measurements of a single channel using a commercial confocal microscope. Although this technology has been evaluated using short-tandem repeat DNA separations, the instrument can easily be used for most multi-color, multi-channel CE analyses. In particular, we plan to explore the possibilities for multiplexed free-zone CE immunoassays within the next year. The prototype instrument is robust, versatile, contains only fixed optical parts, and has the potential to be more cheaply implemented than competing technologies. The economies of parallel detection and the importance of spatial selectivity make this method generally useful for separations in polymeric substrates with multiple microchannels.
微流控技术的发展及其在生物医学检测中的应用有可能提高许多广泛使用的技术的质量和通量。特别是,基于微芯片的毛细管电泳可以产生更快的分析时间,更低的试剂消耗和更易于使用的硅胶毛细管电泳。然而,更常用的玻璃微芯片制造成本昂贵,并且可能不适合交叉污染问题和需要一次性设备的应用。相比之下,塑料或聚合物微流控芯片可以用热压或注射成型技术制造,每个芯片只需要几美分。然而,激光诱导荧光检测在聚合物微芯片提出了一些独特的挑战。由于塑料衬底比独立的二氧化硅毛细管具有更强的荧光性,因此需要空间选择性检测来隔离来自通道内的荧光信号,以达到所需的灵敏度。在过去,这需要一个共聚焦系统,通过对光学元件的机械扫描来测量多个通道。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Y Morgan其他文献

Nicole Y Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Y Morgan', 18)}}的其他基金

Evaluation of Scintillating Nanoparticles for Radiotherapy and PDT
闪烁纳米颗粒放射治疗和 PDT 的评价
  • 批准号:
    7734384
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfluidic Chips and Multicolor Detectors for Capillary Electrophoresis
用于毛细管电泳的微流控芯片和多色检测器
  • 批准号:
    8158001
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfabrication for Biomedical Research
生物医学研究的微加工
  • 批准号:
    8556165
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfabrication for Biomedical Research
生物医学研究的微加工
  • 批准号:
    7967872
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfabrication for Biomedical Research
生物医学研究的微加工
  • 批准号:
    8340631
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfabrication for Biomedical Research
生物医学研究的微加工
  • 批准号:
    10008866
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Evaluation of Scintillating Nanoparticles for Radiotherapy and PDT
闪烁纳米颗粒放射治疗和 PDT 的评价
  • 批准号:
    7967907
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Improved Laser-Induced Fluorescence Detection for Capill
改进的毛细管激光诱导荧光检测
  • 批准号:
    7319259
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Improved Laser-Induced Fluorescence Detection for CE
改进的 CE 激光诱导荧光检测
  • 批准号:
    7146086
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Microfabrication for Biomedical Research
生物医学研究的微加工
  • 批准号:
    8933892
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目

相似海外基金

2023 Physics and Chemistry of Microfluidics Gordon Research Conference and Gordon Research Seminar
2023年微流控物理与化学戈登研究会议暨戈登研究研讨会
  • 批准号:
    10681683
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Engineering Biomaterials to Modulate the Bone Marrow Microenvironment in Multiple Myeloma
工程生物材料调节多发性骨髓瘤的骨髓微环境
  • 批准号:
    10744373
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Process Development and Preclinical Advancement of a Novel Nanoparticle Formulation for Immune Activation
用于免疫激活的新型纳米颗粒制剂的工艺开发和临床前进展
  • 批准号:
    10758714
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Droplet-based Spatially Encoded Live Cell Digital Extraction
基于液滴的空间编码活细胞数字提取
  • 批准号:
    10687620
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting cell-type specific disease phenotypes to promote CNS repair
针对细胞类型特异性疾病表型促进中枢神经系统修复
  • 批准号:
    10718222
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Point-of-Care Assay for Type 1 Diabetes Diagnosis and Prognostication
1 型糖尿病诊断和预测的即时检测
  • 批准号:
    10721535
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A non-invasive metabolic sensor for improving success in IVF
用于提高 IVF 成功率的非侵入性代谢传感器
  • 批准号:
    10741730
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
  • 批准号:
    10654014
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Micro-nanotechnologies for the analysis of islet-derived extracellular vesicles implicated in Type 1 Diabetes
用于分析与 1 型糖尿病有关的胰岛来源的细胞外囊泡的微纳米技术
  • 批准号:
    10706514
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mapping Single Extracellular Vesicles to Parent Cells for Immunotherapy Monitoring
将单个细胞外囊泡映射到亲本细胞以进行免疫治疗监测
  • 批准号:
    10569343
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了