Ear Biomechanics for Restoration of Hearing
恢复听力的耳生物力学
基本信息
- 批准号:7232391
- 负责人:
- 金额:$ 22.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAffectAnatomic structuresArticular ligamentsBehaviorBiomechanicsBiomedical EngineeringCharacteristicsClinicalCochleaComputer SimulationConductive hearing lossCoupledDataDiagnosisDiagnosticDiagnostic ProcedureEarEffectivenessElementsEngineeringEustachian TubeExcisionExternal EarExternal auditory canalFinite Element AnalysisFunctional disorderGoalsHearingHumanImageImage AnalysisInterferometryLabyrinthLasersLigamentsLiquid substanceMaterials TestingMeasurementMeasuresMechanicsMethodologyModelingNecrosisOperative Surgical ProceduresOtitis Media with EffusionOutputPathologicPathologyPatternPhotographyPhysiologicalPropertyQuality of lifeResearch PersonnelSimulateSpeedStapesStructureSurgical DisarticulationSystemTechniquesTemporal bone structureTestingThree-dimensional analysisTissuesTympanic membraneTympanometryWorkbaseclinical applicationdigital imagingelectric impedanceimprovedmiddle earmiddle ear disordermorphometrynanoindentationprogramsreconstructionresearch studyrestorationsample fixationsoundtooltransmission processvibrationviscoelasticity
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this project is to determine how the structure and mechanical properties of human ear affect acoustic-mechanical transmission through the external ear canal and middle ear to inner ear (or cochlea) in normal, pathological and reconstructed ears. Our hypothesis is that incorporation of our 3-D comprehensive FE model of the human ear into clinical tympanometry, a diagnostic tool commonly used on middle ear diseases, and laser Doppler interferometry, a potential clinical tool for diagnosis of conductive hearing loss, can improve the diagnosis of otitis media with effusion (OME). There are four specific aims proposed here: (1) to identify how alterations in middle ear structures affect sound transmission from the ear canal through the middle ear to the cochlea measured with laser interferometry and tympanometry; (2) to measure mechanical properties or viscoelasticity of middle ear tissues such as the ligaments and tympanic membrane; (3) to develop multi-field (i.e., acoustic-structure-fluid) coupled analysis of the 3-D FE model with structural alterations in middle ear on human temporal bones; and (4) To correlate our 3-D FE model results with clinical measurements obtained by tympanometry and laser interferometry for improvement of the diagnosis of middle ear diseases such as OME.
Four unique approaches are incorporated in the project: (a) accurate geometric reconstruction of entire human ear based on histological images of temporal bone morphometry; (b) direct, accurate measurement of viscoelastic properties of middle ear tissues using the nanoindentation system and digital image correlation techniques; (c) improved human temporal bone experiment with dual laser Doppler interferometry system to measure simultaneously the acoustic-mechanical conduction through the middle ear; and (d) coupled acoustic-structure-fluid analysis of sound transmission from the ear canal to middle ear, and to the cochlea.
Experiments described in this proposal will show how changes in middle ear structure and cochlear load affect the sound transmission in the ear. The FE model will demonstrate the potential clinical applications on how the middle ear fluid, ligament cut or removal, and ossicular disarticulation, fixation, or necrosis affect the middle ear transfer function. Thus, the results will be essential for improving the diagnosis of OME, assessing surgical treatment for conductive hearing loss, and potentially improve the quality of life for millions of people.
描述(由申请人提供):本项目的长期目标是确定人耳的结构和机械特性如何影响正常、病理和重建耳中通过外耳道和中耳到内耳(或耳蜗)的声机械传输。我们的假设是,我们的3-D综合FE模型的人耳纳入临床鼓室导抗,一种常用的诊断工具,中耳疾病,和激光多普勒干涉,一种潜在的临床工具,用于诊断传导性听力损失,可以提高诊断渗出性中耳炎(OME)。这里提出了四个具体目标:(1)确定中耳结构的改变如何影响用激光干涉测量法和鼓室测量法测量的从耳道通过中耳到耳蜗的声音传输;(2)测量中耳组织(诸如韧带和鼓膜)的机械特性或粘弹性;(3)开发多场(即,(4)将我们的三维有限元模型结果与鼓室导抗测量和激光干涉测量获得的临床测量结果相关联,以提高中耳疾病如OME的诊断。
该项目采用了四种独特的方法:(a)基于颞骨形态测量的组织学图像精确地重建整个人耳的几何结构;(B)使用纳米压痕系统和数字图像相关技术直接、精确地测量中耳组织的粘弹特性;(c)利用双激光多普勒干涉测量系统改进人颞骨实验,以同时测量通过中耳的声-机械传导;以及(d)从耳道到中耳和到耳蜗的声音传输的耦合声学-结构-流体分析。
本提案中描述的实验将显示中耳结构和耳蜗负荷的变化如何影响耳中的声音传输。有限元模型将证明中耳积液、韧带切割或切除以及听骨断离、固定或坏死如何影响中耳传递函数的潜在临床应用。因此,这些结果对于改善OME的诊断,评估传导性听力损失的手术治疗以及潜在地改善数百万人的生活质量至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONG Z GAN其他文献
RONG Z GAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONG Z GAN', 18)}}的其他基金
Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
- 批准号:
8260378 - 财政年份:2011
- 资助金额:
$ 22.08万 - 项目类别:
Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
- 批准号:
8088449 - 财政年份:2011
- 资助金额:
$ 22.08万 - 项目类别:
Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
- 批准号:
8475579 - 财政年份:2011
- 资助金额:
$ 22.08万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 22.08万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 22.08万 - 项目类别:
Standard Grant