Optimizing speech coding strategies for noise and music

优化噪声和音乐的语音编码策略

基本信息

  • 批准号:
    7213292
  • 负责人:
  • 金额:
    $ 28.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-04-01 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The speech understanding capabilities of cochlear implant (Cl) users have increased steadily throughout the years. However, speech perception performance of Cl users drops tremendously in noisy listening conditions. Also, Cl users are unable to identify familiar melodies and enjoy music. Some Cl patients refer to music as "noise with rhythm". Communicating in noise and enjoying music still remain the two biggest challenges in cochlear implants. Little is known about the factors that contribute to the poor performance of Cl users in noise and in identifying familiar melodies. In this project, we propose a series of experiments aimed at isolating these factors. We propose new signal processing algorithms tailored for music and noise. The proposed experiments have five specific aims. The first aim assesses the relative contribution of fine structure and envelope information on word recognition in noise. The second aim investigates the performance of two noise reduction algorithms that preserve fine temporal cues and/or envelope cues. A method for customizing and optimizing the noise reduction algorithms to individual users is proposed. The third aim assesses the relative contribution of fine structure and envelope information on melody recognition. The fourth aim investigates the performance of a new strategy that incorporates fine-structure information for better music perception. The last aim investigates the performance of a desynchronizing strategy which can be used for subjects who would otherwise not be able to receive any benefit from the strategies proposed in the previous aims for speech or music. The five aims taken together will produce speech/music coding algorithms that will be optimally fit to individual users. The results of the above experiments will lay the groundwork for a better understanding on the importance of fine structure cues for speech understanding in noise and for music appreciation by Cl listeners. It will also open new avenues for the development of future signal processing strategies for cochlear implants that could potentially be used to improve not only speech intelligibility but also speaker identification and tonal language recognition.
描述(由申请人提供):人工耳蜗使用者的言语理解能力多年来稳步提高。然而,在嘈杂的听力条件下,Cl用户的语音感知性能急剧下降。此外,Cl用户无法识别熟悉的旋律并享受音乐。有些Cl患者认为音乐是“有节奏的噪音”。在噪音中交流和欣赏音乐仍然是人工耳蜗的两大挑战。对于导致Cl使用者在噪音和识别熟悉的旋律方面表现不佳的因素,人们知之甚少。在这个项目中,我们提出了一系列旨在分离这些因素的实验。我们提出了适合音乐和噪声的新的信号处理算法。提出的实验有五个具体目的。第一个目的是评估精细结构和包络信息在噪声条件下对单词识别的相对贡献。第二个目的是研究两种降噪算法的性能,这两种算法保留了良好的时间线索和/或包络线索。提出了一种针对个人用户定制和优化降噪算法的方法。第三个目标是评估精细结构和包络信息对旋律识别的相对贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PHILIPOS C Loizou其他文献

PHILIPOS C Loizou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PHILIPOS C Loizou', 18)}}的其他基金

User customization and user optimization of cochlear implant devices
人工耳蜗植入设备的用户定制和用户优化
  • 批准号:
    8302254
  • 财政年份:
    2010
  • 资助金额:
    $ 28.35万
  • 项目类别:
User customization and user optimization of cochlear implant devices
人工耳蜗植入设备的用户定制和用户优化
  • 批准号:
    8113155
  • 财政年份:
    2010
  • 资助金额:
    $ 28.35万
  • 项目类别:
User customization and user optimization of cochlear implant devices
人工耳蜗植入设备的用户定制和用户优化
  • 批准号:
    8385352
  • 财政年份:
    2010
  • 资助金额:
    $ 28.35万
  • 项目类别:
Open Architecture Research Interface For Cochlear Implants
人工耳蜗开放式架构研究接口
  • 批准号:
    7928440
  • 财政年份:
    2007
  • 资助金额:
    $ 28.35万
  • 项目类别:
Optimizing speech coding strategies for noise and music
优化噪声和音乐的语音编码策略
  • 批准号:
    7578964
  • 财政年份:
    2005
  • 资助金额:
    $ 28.35万
  • 项目类别:
Optimizing speech coding strategies for noise and music
优化噪声和音乐的语音编码策略
  • 批准号:
    7371965
  • 财政年份:
    2005
  • 资助金额:
    $ 28.35万
  • 项目类别:
Optimizing speech coding strategies for noise and music
优化噪声和音乐的语音编码策略
  • 批准号:
    7031008
  • 财政年份:
    2005
  • 资助金额:
    $ 28.35万
  • 项目类别:
Optimizing speech coding strategies for noise and music
优化噪声和音乐的语音编码策略
  • 批准号:
    6930776
  • 财政年份:
    2005
  • 资助金额:
    $ 28.35万
  • 项目类别:
SIGNAL PROCESSING STRATEGIES FOR COCHLEAR PROSTHESIS
人工耳蜗的信号处理策略
  • 批准号:
    2860774
  • 财政年份:
    1999
  • 资助金额:
    $ 28.35万
  • 项目类别:
SIGNAL PROCESSING STRATEGIES FOR COCHLEAR PROSTHESIS
人工耳蜗的信号处理策略
  • 批准号:
    6135947
  • 财政年份:
    1998
  • 资助金额:
    $ 28.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了