Maturation functions of the HSV-1 tegument
HSV-1 外皮的成熟功能
基本信息
- 批准号:7216687
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Herpesviruses are important human pathogens that result in life-long persistent infections with numerous clinical manifestations. Herpes simplex virus (HSV) is among the most frequently encountered pathogen by the general population. Thus understanding the biology of this virus is important in the development of efficacious treatments of these infections. Our goal is to understand the mechanism by which the virus acquires its infectious coat and the role of the virus encoded functions in this pathway, primarily by analyzing the functions of two tegument proteins, the UL36 and UL37 gene products. Our hypothesis is that the UL36 and UL37 gene products specify essential and unique functions for the maturation of the assembled particle into an infectious virion. The goals of this proposal are to understand how these two proteins function in the morphogenesis of the infectious particle, identification of the functional domains required for these activities and the interactions that occur during this process. This could potentially lead to the discovery of novel pathways that can be targeted by antiviral intervention. The specific aims to achieve these goals are: Specific Aim 1: Investigating the role of UL36 and UL37 in the maturation of the virus particle using mutant viruses. UL36 may act to translocate capsids to the cytoplasmic site for final envelopment, whereas, UL37 is required for Golgi stabilization prior to the arrival of capsids at this site. Light microscopy, electron microscopy and immuno-EM assays will be used to determine the association of UL36 mutant virus particles with the cellular cytoskeleton and analyze axonal transport in primary neurons. The Golgi structure will be analyzed in the presence and absence of UL37 and the contribution of UL36, capsid assembly and cis-acting signals for facilitating Golgi stabilization will be determined. Specific Aim 2: Protein-protein interactions of UL36 and UL37 with virus and cellular proteins. Protein-protein interactions are critical for a variety of viral and cellular processes. The UL36 and UL37 encoded polypeptides will be used as probes to identify protein-protein interactions using a combination of cell biology (cellular localization), genetic (yeast two-hybrid), biochemical (protein pull-down) assays. Specific Aim 3: Structural studies of UL36 and UL37 in capsids and the mature virion. A capsid binding assay and cryo-electron tomography imaging of virions will illuminate the association of these proteins with a multi-protein assembly (capsid/virion). Structural data is important for understanding how these proteins function in virus egress. Specific Aim 4: Identification of functional domains of UL36 and UL37. Transposon and site-directed mutagenesis will be used to identify functional domains of the UL36 and UL37 genes. Genetic complementation assays will be used to screen the mutants for functional activity. Mutations that specify lethal defects in function will be introduced into the virus using a marker-rescue/marker-transfer method. The outcome will be a functional map of UL36 and UL37 that identifies domains important for capsid translocation, Golgi stabilization, Golgi trafficking, virion incorporation and protein-protein interactions This analysis will identify domains of the proteins that have the potential to be used as targets for antiviral intervention
DESCRIPTION (provided by applicant): Herpesviruses are important human pathogens that result in life-long persistent infections with numerous clinical manifestations. Herpes simplex virus (HSV) is among the most frequently encountered pathogen by the general population. Thus understanding the biology of this virus is important in the development of efficacious treatments of these infections. Our goal is to understand the mechanism by which the virus acquires its infectious coat and the role of the virus encoded functions in this pathway, primarily by analyzing the functions of two tegument proteins, the UL36 and UL37 gene products. Our hypothesis is that the UL36 and UL37 gene products specify essential and unique functions for the maturation of the assembled particle into an infectious virion. The goals of this proposal are to understand how these two proteins function in the morphogenesis of the infectious particle, identification of the functional domains required for these activities and the interactions that occur during this process. This could potentially lead to the discovery of novel pathways that can be targeted by antiviral intervention. The specific aims to achieve these goals are: Specific Aim 1: Investigating the role of UL36 and UL37 in the maturation of the virus particle using mutant viruses. UL36 may act to translocate capsids to the cytoplasmic site for final envelopment, whereas, UL37 is required for Golgi stabilization prior to the arrival of capsids at this site. Light microscopy, electron microscopy and immuno-EM assays will be used to determine the association of UL36 mutant virus particles with the cellular cytoskeleton and analyze axonal transport in primary neurons. The Golgi structure will be analyzed in the presence and absence of UL37 and the contribution of UL36, capsid assembly and cis-acting signals for facilitating Golgi stabilization will be determined. Specific Aim 2: Protein-protein interactions of UL36 and UL37 with virus and cellular proteins. Protein-protein interactions are critical for a variety of viral and cellular processes. The UL36 and UL37 encoded polypeptides will be used as probes to identify protein-protein interactions using a combination of cell biology (cellular localization), genetic (yeast two-hybrid), biochemical (protein pull-down) assays. Specific Aim 3: Structural studies of UL36 and UL37 in capsids and the mature virion. A capsid binding assay and cryo-electron tomography imaging of virions will illuminate the association of these proteins with a multi-protein assembly (capsid/virion). Structural data is important for understanding how these proteins function in virus egress. Specific Aim 4: Identification of functional domains of UL36 and UL37. Transposon and site-directed mutagenesis will be used to identify functional domains of the UL36 and UL37 genes. Genetic complementation assays will be used to screen the mutants for functional activity. Mutations that specify lethal defects in function will be introduced into the virus using a marker-rescue/marker-transfer method. The outcome will be a functional map of UL36 and UL37 that identifies domains important for capsid translocation, Golgi stabilization, Golgi trafficking, virion incorporation and protein-protein interactions This analysis will identify domains of the proteins that have the potential to be used as targets for antiviral intervention
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PRASHANT J DESAI其他文献
PRASHANT J DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PRASHANT J DESAI', 18)}}的其他基金
Elucidation of genetic networks of HSV-1 virion proteins and discovery of their functions in the morphogenesis of the infectious virus particle
阐明 HSV-1 病毒体蛋白的遗传网络并发现它们在感染性病毒颗粒形态发生中的功能
- 批准号:
10319969 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Synthetic Genomics Approach to Assemble Infectious Clones of KSHV
组装 KSHV 感染性克隆的合成基因组学方法
- 批准号:
9807969 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Engineering Herpesviruses using Synthetic Genomics
使用合成基因组学改造疱疹病毒
- 批准号:
8893391 - 财政年份:2015
- 资助金额:
$ 31.82万 - 项目类别:
Development of a virion display (VirD) array to profile human GPCR interactions
开发病毒粒子展示 (VirD) 阵列来分析人类 GPCR 相互作用
- 批准号:
9247705 - 财政年份:2015
- 资助金额:
$ 31.82万 - 项目类别:
How does the KSHV small capsid protein function to promote self-assembly?
KSHV 小衣壳蛋白如何发挥促进自组装的作用?
- 批准号:
8733130 - 财政年份:2013
- 资助金额:
$ 31.82万 - 项目类别:
Bridging KSHV capsids to the nuclear egress complex
将 KSHV 衣壳桥接至核出口复合体
- 批准号:
8570507 - 财政年份:2013
- 资助金额:
$ 31.82万 - 项目类别:
How does the KSHV small capsid protein function to promote self-assembly?
KSHV 小衣壳蛋白如何发挥促进自组装的作用?
- 批准号:
8570572 - 财政年份:2013
- 资助金额:
$ 31.82万 - 项目类别:
Generation and Evaluation of KSHV VLPs as Vaccines
KSHV VLP 作为疫苗的生成和评估
- 批准号:
7853673 - 财政年份:2009
- 资助金额:
$ 31.82万 - 项目类别:
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Cargo, biogenesis and functions of extracellular vesicles released during HSV-1 infection
HSV-1感染期间释放的细胞外囊泡的货物、生物发生和功能
- 批准号:
10439839 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Cargo, biogenesis and functions of extracellular vesicles released during HSV-1 infection
HSV-1感染期间释放的细胞外囊泡的货物、生物发生和功能
- 批准号:
10652535 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Cargo, biogenesis and functions of extracellular vesicles released during HSV-1 infection
HSV-1感染期间释放的细胞外囊泡的货物、生物发生和功能
- 批准号:
10273664 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Mechanism and regulation of protein kinase functions in HSV nuclear egress
HSV核出口中蛋白激酶功能的机制和调控
- 批准号:
10088400 - 财政年份:2020
- 资助金额:
$ 31.82万 - 项目类别:
Elucidation of genetic networks of HSV-1 virion proteins and discovery of their functions in the morphogenesis of the infectious virus particle
阐明 HSV-1 病毒体蛋白的遗传网络并发现它们在感染性病毒颗粒形态发生中的功能
- 批准号:
10319969 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Structural and biochemical insights into multiple functions of HSV-1 UL21 in viral life cycle
HSV-1 UL21 在病毒生命周期中多种功能的结构和生化见解
- 批准号:
8908572 - 财政年份:2015
- 资助金额:
$ 31.82万 - 项目类别:
Structural and biochemical insights into multiple functions of HSV-1 UL21 in viral life cycle
HSV-1 UL21 在病毒生命周期中多种功能的结构和生化见解
- 批准号:
9052050 - 财政年份:2015
- 资助金额:
$ 31.82万 - 项目类别: