Enhancing Audio Transformation through the Integration of Machine Learning and Digital Signal Processing Techniques
通过机器学习和数字信号处理技术的集成增强音频转换
基本信息
- 批准号:2856271
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning techniques have demonstrated significant potential in various audio processing applications. However, the current trend in AI research favours larger, more computationally intensive "black box" models. While these models may achieve impressive performance, they often lack the transparency and tweak-ability necessary to align with the specific artistic vision and requirements of musicians. To be truly useful in music production, audio transformation tools need to be responsive, highly customisable, and capable of real-time performance.The objective of this PhD project is to explore the integration of classical digital signal processing (DSP) techniques into machine learning frameworks to create fast, modular and creative audio transformation models. By leveraging the explicit use of musical theoretical structures employed in traditional DSP algorithms with the expanded generative modelling capabilities of machine learning, this research aims to achieve two primary goals:Improving the robustness, controllability and transparency of machine learning-based audio transformation modelsExpanding the feature set and capabilities of DSP algorithms while maintaining their lightweight and real-time performance benefits.The project aims to accomplish these objectives through several key tasks. Firstly, it involves transforming traditional DSP algorithms into parametrically driven tools for audio generation and transformation. Secondly, the project seeks to design lightweight machine learning models that, by leveraging the music theoretical foundation inherent in these algorithms, reduce computational costs during training and enhance the models' resilience to small training sets. Lastly, the project aims to implement techniques that enhance the inference efficiency of these models, enabling fast performance even on basic computers with limited compute resources.By bridging the gap between classical DSP techniques and machine learning frameworks for audio processing, this project seeks to develop robust and transparent audio transformation models. By incorporating the musical theoretical structures used in traditional DSP algorithms while harnessing the power of machine learning, a toolkit of novel musical audio transformations and generators will be created. This toolkit will offer musicians enhanced flexibility, responsiveness, and real-time performance, ultimately advancing audio processing technology in the music production domain.
机器学习技术已经在各种音频处理应用中表现出巨大的潜力。然而,目前人工智能研究的趋势倾向于更大、计算更密集的“黑匣子”模型。虽然这些模型可以实现令人印象深刻的性能,但它们往往缺乏与音乐家的特定艺术视野和要求保持一致所需的透明度和调整能力。为了在音乐制作中真正有用,音频转换工具需要响应迅速,高度可定制,并能够实时执行。这个博士项目的目标是探索将经典数字信号处理(DSP)技术集成到机器学习框架中,以创建快速,模块化和创造性的音频转换模型。通过利用传统DSP算法中使用的音乐理论结构与机器学习的扩展生成建模功能,本研究旨在实现两个主要目标:提高基于机器学习的音频转换模型的鲁棒性,可控性和透明度扩展DSP算法的功能集和功能,同时保持其轻量级和实时性能优势。首先,它涉及将传统的DSP算法转换为用于音频生成和转换的参数驱动工具。其次,该项目旨在设计轻量级机器学习模型,通过利用这些算法中固有的音乐理论基础,降低训练过程中的计算成本,并增强模型对小训练集的适应能力。最后,该项目旨在实现提高这些模型的推理效率的技术,即使在计算资源有限的基础计算机上也能实现快速性能。通过弥合经典DSP技术与音频处理机器学习框架之间的差距,该项目旨在开发强大而透明的音频转换模型。通过整合传统DSP算法中使用的音乐理论结构,同时利用机器学习的力量,将创建一个新颖的音乐音频转换和生成器工具包。该工具包将为音乐家提供增强的灵活性、响应能力和实时性能,最终推动音乐制作领域的音频处理技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
- 批准号:
2335590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Diversifying audio description in the Australian digital landscape
澳大利亚数字景观中的多样化音频描述
- 批准号:
DP240103045 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Listening to Nature: Transforming Bioacoustics through Spatial Audio
聆听自然:通过空间音频改变生物声学
- 批准号:
DE230101567 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
- 批准号:
EP/X032914/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
- 批准号:
EP/X032981/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Challenges in Immersive Audio Technologies
沉浸式音频技术的挑战
- 批准号:
EP/X032558/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
I-Corps: Liveness detection and integrity authentication of digital audio
I-Corps:数字音频的活性检测和完整性认证
- 批准号:
2309443 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spatial Audio for Managing Mental Illness (SAMMI)
用于管理精神疾病的空间音频 (SAMMI)
- 批准号:
10054650 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Auditioning the Sonosphere: Live Audio Streaming as Expanded Geo-Practice
试听 Sonosphere:实时音频流作为扩展的地理实践
- 批准号:
2887383 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship