Bio-inspired photonics and surface engineering for sustainable energy materials
用于可持续能源材料的仿生光子学和表面工程
基本信息
- 批准号:2858904
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rapid consumption of fossil fuels and its consequential ecological and environmental issues necessitate the exploration of solutions centered around renewable green resources. Among the various alternative methods of green energy production, photoelectrocatalysis (PEC) emerges as a highly promising approach for simultaneously addressing energy and environmental concerns. PEC offers the potential to store intermittent yet abundant solar energy in the form of high-density fuels, notably hydrogen (H2). One of the major milestones in achieving efficient hydrogen production lies in the optimization of the photo absorbers, involving processes that enhance the absorption of solar radiation and generate a sufficient number of electrons (e-) and holes (h+) to drive the thermodynamically uphill redox processes, as well as material surface morphology and chemical structure that interact with other phases. - the research questions the project is trying to address/the objectives of the project:1. This project aims to develop novel fabrication methods for photocatalytic materials. The research questions we aim to address are as follows: In heterogeneous photocatalytic processes, inexpensive and abundant metal oxides (MOs) with bandgaps in the UV-Vis range are commonly employed as catalysts. 1) To achieve efficient photocatalytic water splitting, research on band gap engineering of MOs needs to be developed to align with the energy requirements of the overall water splitting process. 2) Also, many wide-bandgap MO semiconductors encounter limited catalytic activity for hydrogen production within the visible spectral range, thereby impeding the sufficient utilization of solar radiation. 3) Moreover, good chemical stability and efficient charge separation between photoexcited electrons (e-) and reactive holes (h+) are critical for both photocatalysts and electrochemical reactions.2. In terms of objectives in this project, we focus on harnessing the photonic characteristics of materials, with the objective of enhancing the photocatalytic performance of MOs. This will be accomplished by improving the nanoengineered structure of photocatalytic materials, facilitating changes in MO bandgap, providing high surface area, and enhancing the mobility of (e-) - (h+) pairs.Specifically, 1) Our approach involves the synthesis of sustainable photonic nanostructures, specifically crystalline structures with controlled long-range and short-range crystalline orders, which serve as template materials for MOs. 2) The implementation of MO structures in the form of photonic crystals is anticipated to enhance the photocatalytic performance of MOs within the visible light range. This enhancement can be achieved through significantly augmented light-material interaction at the edge of the photonic bandgap via the stop band, a frequency range that forbids propagation. 3) The crystal structure and overlap of the photonic and electronic band gaps in these structures extend the lifetimes of (e-) - (h+) pairs, thereby facilitating more efficient charge separation. 4) Tuning of the surface texture is undertaken to strike a balance between light-harvesting capacity, crystal structure, and potential losses during bubble formation and release.
化石燃料及其相应的生态和环境问题的快速消费需要探索以可再生绿色资源为中心的解决方案。在绿色能源生产的各种替代方法中,光电催化(PEC)是一种同时解决能源和环境问题的高度有希望的方法。 PEC提供了以高密度燃料(特别是氢(H2))形式存储间歇性但丰富的太阳能的潜力。实现有效氢产生的主要里程碑之一在于优化照片吸收器,涉及增强太阳辐射的吸收的过程,并产生足够数量的电子(E-)和孔(H+),以驱动热力学上的热力学上上坡层状工艺以及与其他层面相互作用的材料表面形式和化学层相互作用。 - 研究问题该项目正在尝试解决项目的目标:1。该项目旨在开发用于光催化材料的新型制造方法。我们旨在解决的研究问题如下:在异质的光催化过程中,廉价且丰富的金属氧化物(MOS)在UV-VIS范围内具有带镜头,通常用作催化剂。 1)为了实现有效的光催化水分割,需要开发对MOS带隙工程的研究,以与整体水分流过程的能量需求保持一致。 2)此外,许多宽带mo半导体在可见光谱范围内遇到有限的氢产生催化活性,从而阻碍了太阳辐射的足够利用。 3)此外,光激发电子(E-)和反应性孔(H+)之间的良好化学稳定性和有效的电荷分离对于光催化剂和电化学反应至关重要。2。就该项目的目标而言,我们专注于利用材料的光子特性,目的是增强MOS的光催化性能。这将通过改善光催化材料的纳米工程结构,促进MO带隙的变化,提供高表面积,并增强(E-) - (H+)对的迁移率。 2)预计以光子晶体形式的MO结构的实现将增强MOS在可见光范围内的光催化性能。可以通过停止带的光子带隙边缘的显着增强的轻质物质相互作用来实现这种增强,这一频率范围是禁止传播的频率范围。 3)这些结构中光子和电子带隙的晶体结构和重叠延长了(e-) - (H+)对的寿命,从而促进了更有效的电荷分离。 4)进行表面纹理的调整是为了在气泡形成和释放期间的轻度收获能力,晶体结构和潜在损失之间取得平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
FET/SHF: Small: Reinforcement learning and transformer inspired smart photonics inverse design
FET/SHF:小型:强化学习和变压器启发的智能光子逆设计
- 批准号:
2309403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Bio-Inspired Molecular Signal-Amplification Sensing
仿生分子信号放大传感
- 批准号:
22KJ1283 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Nature inspired, environment friendly fibrous flexible electronics and photonics
受自然启发的环保纤维柔性电子和光子学
- 批准号:
RGPIN-2017-04666 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nature inspired, environment friendly fibrous flexible electronics and photonics
受自然启发的环保纤维柔性电子和光子学
- 批准号:
RGPIN-2017-04666 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Creation of brain-inspired material intelligence composed of nanomaterial network
创造由纳米材料网络组成的类脑物质智能
- 批准号:
20K22485 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up