Spatio-temporal Chain Event Graphs for translating expert judgement into complex statistical models. (Ref:4659)
时空链事件图,用于将专家判断转化为复杂的统计模型。
基本信息
- 批准号:2859564
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In situations such as criminal proceedings, public health intervention and creating new legislation, statisticians are often employed to transform verbal descriptions of problems into statistical models. Not only can these models be used by decision makers to inform the judgements they decide to push forwards, but they also allow experts to formalise their understanding of a problem and integrate particular knowledge they have into a model. Graphical models are particularly attractive tools for generating statistical models as they offer the expert a structural and visual understanding of the underlying statistical relationships. Once constructed, these models can be used by statisticians, domain experts and less expert users alike, owing to their interpretability. Such interpretable models are particularly attractive in the age of AI, where transparency, auditability and interpretability of statistical models is so important for confidence in their use.Chain Event Graphs are an important innovation in this area. First developed to overcome the limitations of modelling using Bayesian Networks, they arise from an event tree structure. Event trees partition the different features in a data set so that every unique combination of features and outcomes follows a unique path. CEGs allow representation of asymmetry directly within the model, unlike Bayesian Networks, by deleting the edges within the event tree. Given an event tree, experts express exchangeability judgements by simply colouring vertices, so that any nodes of the same colour are given the same probability of occurrence (the same stage). The resulting staged tree is converted to a Chain Event Graph by merging the vertices whose colours and structure are the same. All vertices at the end of a branch are contracted into a single vertex, known as the sink. Dirichlet priors on each stage are then obtained and can be updated with data through the graph structure to form an analytically tractable posterior. Several extensions have been made to Chain Event Graphs to consider adaptions through time using various streams of data to perform prior to posterior analyses. These variants, known as Dynamic Chain Event Graphs (DCEGs) include one-step predictions with discrete time-steps (Freeman, 2010), representing infinite event trees as CEGs with links to semi-Markov models (Barclay, et al., 2015), and continuous time DCEGs (CT-DCEGs) which model non-exponentially distributed holding times at various states within the CEG (Shenvi & Smith, 2020). Building on these extensions, I wish to further extend the DCEG model through space. DCEGs have not yet been used to compare situations in different geographical areas - this extension would allow a CEG model of a single process with different staged trees for different geographical areas to be modelled through a single hierarchical structure. Though my initial research will focus on using CEGs to model crime data, the aim is to develop spatio-temporal CEG technologies with wide applicability. CEGs use intuitive and explainable structures to elicit rich and complex statistical models from a wide array of experts. Further research to develop them into competitors with parametric spatio-temporal models is needed in order to bring the intuition and confidence experts have in CEGs to a much wider class of important problems.
在刑事诉讼、公共卫生干预和制定新的立法等情况下,统计学家往往被用来将对问题的口头描述转化为统计模型。这些模型不仅可以被决策者用来为他们决定推进的判断提供信息,而且还允许专家将他们对问题的理解形式化,并将他们所拥有的特定知识整合到模型中。图形模型是生成统计模型的特别有吸引力的工具,因为它们为专家提供了对底层统计关系的结构和视觉理解。这些模型一旦建立,由于其可解释性,可供统计人员、领域专家和不太专业的用户使用。这种可解释的模型在人工智能时代特别有吸引力,在人工智能时代,统计模型的透明度,可解释性和可解释性对于其使用的信心非常重要。链事件图是这一领域的重要创新。最初是为了克服使用贝叶斯网络建模的局限性而开发的,它们来自事件树结构。事件树对数据集中的不同特征进行分区,以便特征和结果的每个独特组合都遵循唯一的路径。与贝叶斯网络不同,CEG通过删除事件树中的边,允许直接在模型中表示不对称性。给定一个事件树,专家通过简单地给顶点着色来表达交换性判断,这样任何相同颜色的节点都被赋予相同的发生概率(相同的阶段)。通过合并颜色和结构相同的顶点,将得到的阶段树转换为链事件图。分支末端的所有顶点都收缩为一个顶点,称为汇点。每个阶段上的狄利克雷先验,然后获得,并可以通过图形结构的数据更新,形成一个分析处理后。已经对链事件图进行了几次扩展,以考虑在后验分析之前使用各种数据流进行时间适应。这些被称为动态链事件图(DCEG)的变体包括具有离散时间步长的一步预测(Freeman,2010),将无限事件树表示为具有到半马尔可夫模型的链接的CEG(Barclay等人,2015),和连续时间DCEG(CT-DCEG),其对CEG内各种状态下的非指数分布保持时间进行建模(Shenvi & Smith,2020)。在这些扩展的基础上,我希望通过空间进一步扩展DCEG模型。DCEG尚未用于比较不同地理区域的情况-这种扩展将允许通过单个层次结构对具有不同地理区域的不同阶段树的单个过程的CEG模型进行建模。虽然我最初的研究将集中在使用CEG建模犯罪数据,目的是开发时空CEG技术具有广泛的适用性。CEG使用直观和可解释的结构,从广泛的专家中引出丰富而复杂的统计模型。需要进一步的研究,以使他们成为竞争对手的参数时空模型,以使直觉和信心专家在CEG更广泛的一类重要问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
- 批准号:82371454
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
- 批准号:32371150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
水稻种子际固有细菌的群落多样性及其瞬时演替研究
- 批准号:30770069
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
- 批准号:
BB/Y002709/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
- 批准号:
FT230100388 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
- 批准号:
DE240100668 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
- 批准号:
23K28346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




