Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
基本信息
- 批准号:2869702
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Satisfiability Modulo Theories SMT, for short, is a set of decision problems defined within a theory, meaning a specific set of axioms and inference rules. An SMT solver is a tool that determines whether a given formula is satisfiable and, if that is the case, finds a valid assignment for its variables. Otherwise, a subset of the input formula known to be unsatisfiable is returned, leading to the creation of a counterexample.By exploiting the relationship between validity and satisfiability, it is possible to verify if a set of premises p1, p2, ..., pn entails a conclusion c by checking the unsatisfiability of the formula built as a conjunction of all the premises plus the negation of the conclusion. If the result is unsat the implication is verified.SMT problems find their use in many different fields, from formal verification of programs and protocols to graph theory and combinatorial mathematics. Hence, many SMT solvers have been developed over the years. Z3 and CVC5 are among the most renowned and utilized. An exciting and relatively novel application of SMT solvers is verifying machine learning models. The interest arises from the fact that recently, the use of machine learning tools has become more and more widespread. As a result, the safety of such systems is receiving increasing attention, especially in safety-critical situations, with a trend towards approaches that verify some properties of the model formally.A NN (neural network) is a set of layers of nodes, called neurons, connected with all the ones in the previous and next layer through a set of weights that changes during the training phase. A DNN (Deep Neural Network) is a neural network with many layers, typically more than 3.Research on the application of SMT solvers for verification of DNNs has given rise to tools such as Reluplex and, more recently, NeuralSAT. Both solvers present a case study on the ACAS collision avoidance system for aircraft.Unfortunately, the problem is NP-complete, and the worst-case scenario is exponential. Hence, the goal is to improve the solver's efficiency with as little compromise as possible. One approach is to allow for a configurable degree of perturbation, delta. The speedup arises from using faster but error-inducing floating point arithmetic instead of the exact rational operations that most solvers carry out. The delta-weakening is defined as a numerical relaxation of the original formula. For instance, the delta-weakening of x = 0 is |x| <= delta. Note that if a formula is satisfiable, its delta-weakening is always satisfiable.Another way to make the most out of the resources we are given is through the parallelization of the algorithms used to determine the satisfiability of the formula. When dealing with linear programming, the simplex is the first to come to mind. The usage of interior-point methods could represent a valid alternative. The questions I aim to find an answer to are:Can algorithmic parallelization be introduced for verified computation of linear programming problems? While naive parallelization of the simplex algorithm is deemed inferior to sequential approaches specialized for sparse matrices, it may be worth investigating alternative approaches, such as interior-point methods, and evaluating the cost of changing the algorithm at runtime based on the input. My work will use the groundwork laid by the brilliant Martin Sidaway, who developed the current version of the delta complete linear SMT solver dLinear4.What advantages does it bring to employ delta-complete SMT solvers for verifying properties of machine learning and optimization algorithms?Computing the benchmarks on the ACAS case study will be a good starting point to evaluate the approach's effectiveness. However, the impact of the delta-weakening on the precision of the results will have to be considered.
可满足性模理论SMT,简称,是一组定义在理论中的决策问题,意味着一组特定的公理和推理规则。SMT求解器是一种工具,用于确定给定公式是否可满足,如果是,则为其变量找到有效的赋值。否则,返回已知为不可满足的输入公式的子集,从而导致创建反例。通过利用有效性和可满足性之间的关系,可以验证是否存在一组前提p1,p2,.,pn通过检查作为所有前提加上结论的否定的合取而建立的公式的不可满足性来得出结论c。SMT问题在许多不同的领域都有应用,从程序和协议的形式化验证到图论和组合数学。因此,多年来开发了许多SMT求解器。Z3和CVC 5是最著名和最常用的。SMT求解器的一个令人兴奋且相对新颖的应用是验证机器学习模型。最近,机器学习工具的使用变得越来越广泛。因此,这类系统的安全性越来越受到关注,特别是在安全关键的情况下,有一种趋势是正式验证模型的某些属性。NN(神经网络)是一组称为神经元的节点层,通过一组在训练阶段变化的权重与前一层和下一层中的所有节点连接。深度神经网络(DNN)是一种具有多层的神经网络,通常超过3层。对SMT求解器用于验证DNN的应用的研究已经产生了诸如Reluplex和最近的NeuralSAT等工具。这两个求解器都以飞机ACAS防撞系统为例进行了研究,不幸的是,该问题是NP完全的,最坏情况是指数的。因此,目标是以尽可能少的妥协来提高求解器的效率。一种方法是允许可配置的扰动度delta。加速来自于使用更快但会导致错误的浮点运算,而不是大多数求解器执行的精确有理运算。δ弱化被定义为原始公式的数值松弛。例如,x = 0的δ弱化是|X| <= delta.注意,如果一个公式是可满足的,那么它的δ-弱化总是可满足的。另一种充分利用我们所给出的资源的方法是通过并行化用于确定公式可满足性的算法。当处理线性规划时,单纯形是第一个想到的。使用边界点方法可能是一种有效的替代方法。我的目标是找到一个答案的问题是:算法并行化可以引入线性规划问题的验证计算?虽然单纯形算法的朴素并行化被认为不如专用于稀疏矩阵的顺序方法,但值得研究替代方法,例如通道点方法,并评估基于输入在运行时更改算法的成本。我的工作将使用杰出的Martin Sidaway奠定的基础,他开发了当前版本的delta完全线性SMT求解器dLinear 4。使用delta完全SMT求解器来验证机器学习和优化算法的属性有什么优势?计算ACAS案例研究的基准将是评估该方法有效性的一个很好的起点。然而,必须考虑δ弱化对结果精度的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
- 批准号:
2343008 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
DryBrain: single cell-resolution molecular mechanisms ensuring tolerance of insect nervous system to complete desiccation
DryBrain:单细胞分辨率分子机制确保昆虫神经系统对完全干燥的耐受性
- 批准号:
23K26919 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
RII Track-4:NSF: Direct and Complete Characterization of Electronic Properties of Materials Under Pressure
RII Track-4:NSF:压力下材料电子特性的直接完整表征
- 批准号:
2327363 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A complete double copy dictionary and its applications
完整的双副本词典及其应用
- 批准号:
2868821 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Towards a complete characterization of the metastasis founder clones in colorectal cancer
全面表征结直肠癌转移起始克隆
- 批准号:
10973772 - 财政年份:2023
- 资助金额:
-- - 项目类别:
STTR Phase II: Stem Cell Delivery in Microscopic Hydrogel Droplets for Faster and More Complete Healing of Equine Tendon and Ligament Injuries
STTR 第二阶段:以微小水凝胶液滴形式输送干细胞,以更快、更完全地治愈马肌腱和韧带损伤
- 批准号:
2304324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Development of multi omics data analysis method using short/long read integration and complete human reference sequences
使用短/长读长集成和完整的人类参考序列开发多组学数据分析方法
- 批准号:
23K11300 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complete inhibition of ROCK signaling in diabetic nephropathy
完全抑制糖尿病肾病中的 ROCK 信号传导
- 批准号:
23K07709 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenges to the problem of elder-to-elder nursing care from a proposal for a complete unrestrained monitoring method of wheelchair operating mechanisms
轮椅操作机构完整无限制监测方法的提出对长者护理问题的挑战
- 批准号:
23K01928 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPgenie: A provider agnostic platform combining healthcare APIs with robotic process automations to complete most primary care administration tasks
GPgenie:一个与提供商无关的平台,将医疗保健 API 与机器人流程自动化相结合,以完成大多数初级保健管理任务
- 批准号:
10045413 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D