Evolutionary Modeling/Prediction of ncRNA Genes in Flies

果蝇 ncRNA 基因的进化建模/预测

基本信息

  • 批准号:
    7167737
  • 负责人:
  • 金额:
    $ 21.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2011-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The use of probabilistic evolutionary models is an integral part of comparative genomics. Applications include design of evolutionary genefinding software; screening of coding DNA sequences for sites under selection; identification of regulatory elements in genomes; improved detection of homologues; and prediction of deleterious SNPs. Such evolutionary models remain under-developed, particularly for the subclass of genes expressed solely as noncoding RNA (ncRNA). However, there is increasing biomedical interest in this class of genes: microRNAs are now suspected to regulate a wide range of targets, and are used by viruses to silence host transcription; small interfering RNAs are being explored as a therapeutic treatment; drugs exist that specifically target RNA structure (e.g. bacterial ribosomes, or retroviral binding sites such as HIV's Rev Response Element); RNA motifs known as "riboswitches", echoing genetically- engineered "aptamers" in their ability to discriminatively bind small-molecule ligands, have recently been discovered in prokaryotes; many catalytic ncRNAs ("ribozymes") are active in human and bacterial cells; and many of the above technologies (e.g. riboswitches/ aptamers/ ribozymes) are beginning to be exploited by synthetic biologists e.g. as novel reporter constructs, with great biomedical potential. Here, we propose to develop ncRNA evolutionary models for a focused, biologically testable case study: the identification of ncRNA genes by comparative analysis of twelve fruit fly genomes. Computationally, we will use this example to drive forward our ongoing methods development in RNA analysis and evolutionary modeling, adapting our successful "xrate" and "stemloc" programs for use with evolutionary stochastic context-free grammars. Experimentally, we will test our predictions by wet-lab validation methods such as RT-PCR and sequencing, with the help of our collaborators and locally available resources such as the Berkeley Drosophila Genome Project's cDNA libraries. All our software will be freely available online.
描述(由申请人提供):使用概率进化模型是比较基因组学的一个组成部分。应用包括设计进化基因查找软件;筛选待选位点的编码DNA序列;基因组调控元件的鉴定;改进了同源物的检测;以及有害snp的预测。这样的进化模型仍然不发达,特别是对于仅以非编码RNA (ncRNA)表达的基因亚类。然而,生物医学对这类基因的兴趣越来越大:现在怀疑microrna可以调节广泛的靶标,并被病毒用来沉默宿主转录;小干扰rna正在被探索作为一种治疗方法;存在专门针对RNA结构的药物(例如细菌核糖体或逆转录病毒结合位点,如HIV的Rev反应元件);最近在原核生物中发现了被称为“核糖开关”的RNA基序,与基因工程的“适体”相呼应,它们具有区别性地结合小分子配体的能力;许多催化ncrna(“核酶”)在人类和细菌细胞中都很活跃;许多上述技术(如核开关/核酸适体/核酶)正开始被合成生物学家利用,例如作为具有巨大生物医学潜力的新型报告结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian H Holmes其他文献

Ian H Holmes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian H Holmes', 18)}}的其他基金

Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 21.21万
  • 项目类别:
Web-based visualization of coronavirus genomes and proteins
基于网络的冠状病毒基因组和蛋白质可视化
  • 批准号:
    10162044
  • 财政年份:
    2020
  • 资助金额:
    $ 21.21万
  • 项目类别:
Developing the JBrowse Genome Browser to Visualize Structural Variants and Cancer Genomics Data
开发 JBrowse 基因组浏览器以可视化结构变异和癌症基因组数据
  • 批准号:
    9751259
  • 财政年份:
    2017
  • 资助金额:
    $ 21.21万
  • 项目类别:
Developing the JBrowse Genome Browser to Visualize Structural Variants and Cancer Genomics Data
开发 JBrowse 基因组浏览器以可视化结构变异和癌症基因组数据
  • 批准号:
    9390007
  • 财政年份:
    2017
  • 资助金额:
    $ 21.21万
  • 项目类别:
Developing the JBrowse Genome Browser to Visualize Structural Variants and Cancer Genomics Data
开发 JBrowse 基因组浏览器以可视化结构变异和癌症基因组数据
  • 批准号:
    9524813
  • 财政年份:
    2017
  • 资助金额:
    $ 21.21万
  • 项目类别:
Enhancing the GMOD Suite of Genome Annotation and Visualization Tools
增强 GMOD 基因组注释和可视化工具套件
  • 批准号:
    8108959
  • 财政年份:
    2007
  • 资助金额:
    $ 21.21万
  • 项目类别:
Enhancement of the GBrowse Genome Annotation Browser
GBrowse 基因组注释浏览器的增强
  • 批准号:
    7487905
  • 财政年份:
    2007
  • 资助金额:
    $ 21.21万
  • 项目类别:
Developing the Apollo software for high-throughput annotation of multiple genomes
开发用于多个基因组高通量注释的 Apollo 软件
  • 批准号:
    10736567
  • 财政年份:
    2007
  • 资助金额:
    $ 21.21万
  • 项目类别:
Apollo - Universal Infrastructure for Genome Curation
Apollo - 基因组管理的通用基础设施
  • 批准号:
    10176512
  • 财政年份:
    2007
  • 资助金额:
    $ 21.21万
  • 项目类别:
Enhancements to the GMOD Suite of Genome Annotation and Visualization Tools
基因组注释和可视化工具 GMOD 套件的增强
  • 批准号:
    9920732
  • 财政年份:
    2007
  • 资助金额:
    $ 21.21万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了