Comparative Genomics to Identify Functional Blocks & HGT

比较基因组学来识别功能模块

基本信息

  • 批准号:
    7498626
  • 负责人:
  • 金额:
    $ 11.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

As the genomes of more and more species are sequenced it has become apparent that one of the mosl powerful techniques for determining region function in the human genome is by comparison to the genomes of other species. The implications of such understanding for disease diagnosis and specialized drug and vaccine design are clear. Similarly, genpmic comparison between bacteria can reveal regions which are functionally important in the development of infectious diseases and again aid drug and vaccine design. This project has two primary research goals. One is the development of methodology for finding functionally predictive signatures of non-coding sequences (NCS)highly conserved across multiple species, and the other is to develop novel approaches for detecting Horizontal Gene Transfer (HOT). The comparison of genomes is the common thread in this research.In pursuit of their first goal, the investigators plan to integrate genomic sequence data, provided by their collaborators, with experimental and literature data, such as microarray-expression data, GO-functional- annotation for nearby genes, and ChlP-Chip data. The results will be used to evaluate the functional relevance, if any, of each NCS and then to define a signature predictive of function in terms of measurable covariates and sequence structure. For instance, if a sequence signature characterizes NCS whose nearest genes contribute to a particular function then an unknown gene close to an NCS with the same signature would be a prime candidate for interrogation of that function. The investigators propose to attack this problem by 1). Developing non standard types of clustering methods based on supervised learning algorithms, e.g.,Random Forests, 2) Representing the NCS by the parameters of a stochastic model and determining appropriate thresholds for model fitting by using resampling and other Monte Carlo methods. Under the second topic, the investigators propose two different approaches for determining whether Functionally significant HGT has occurred in bacteria. The first approach is to take a known functionally important family(NIFgenes) for which HGT is a matter of dispute, and devise quantitative measures which they expect will enable a firm conclusion. They intend to refine similarity measures between genes in different species ,such as BLAST scores, corrected for evolutionary distance They will compute these measures for pairs of NIF genes in different species , pairs of genes known to be HGT (antibiotic immunity conferring genes) and genes very unlikely to be HGT (ribosomal proteins). The second approach is to look for anomalously long stretches of 16s RNA conserved within substantial subsets of bacterial species which are otherwise only distantly related. Mathematical and statistical challenge include: Under approach I, standardizing comparisons of genes with different mutation rates; devising an appropriate classifier for HGT vs. non HGT, and computing appropriate estimates of the probability of classifying a gene as HGT when it isn't and vice versa; Under approach II, extending existing methods for detecting large inclusions by taking into account phylogenetic tree topology and oranch lengths.
随着越来越多的物种的基因组被测序,很明显,其中一个最常见的物种

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

peter J bickel其他文献

peter J bickel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('peter J bickel', 18)}}的其他基金

Removing statistical bottle-necks in data analysis for the ENCODE Consortium
消除 ENCODE 联盟数据分析中的统计瓶颈
  • 批准号:
    8546272
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Removing statistical bottle-necks in data analysis for the ENCODE Consortium
消除 ENCODE 联盟数据分析中的统计瓶颈
  • 批准号:
    8402497
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Removing statistical bottle-necks in data analysis for the ENCODE Consortium
消除 ENCODE 联盟数据分析中的统计瓶颈
  • 批准号:
    9037906
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Removing statistical bottle-necks in data analysis for the ENCODE Consortium
消除 ENCODE 联盟数据分析中的统计瓶颈
  • 批准号:
    8699811
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Beyond heuristics: a tool for the rigorous statistical analysis of *-seq assays.
超越启发式:对 *-seq 检测进行严格统计分析的工具。
  • 批准号:
    8290222
  • 财政年份:
    2011
  • 资助金额:
    $ 11.48万
  • 项目类别:
Beyond heuristics: a tool for the rigorous statistical analysis of *-seq assays.
超越启发式:对 *-seq 检测进行严格统计分析的工具。
  • 批准号:
    8096347
  • 财政年份:
    2011
  • 资助金额:
    $ 11.48万
  • 项目类别:
Travel Support for High Dimensional Statistics in Biology
生物学高维统计的旅行支持
  • 批准号:
    7485843
  • 财政年份:
    2008
  • 资助金额:
    $ 11.48万
  • 项目类别:
Comparative Genomics to Identify Functional Blocks & HGT
比较基因组学来识别功能模块
  • 批准号:
    7418308
  • 财政年份:
    2005
  • 资助金额:
    $ 11.48万
  • 项目类别:
Comparative Genomics to Identify Functional Blocks & HGT
比较基因组学来识别功能模块
  • 批准号:
    7240439
  • 财政年份:
    2005
  • 资助金额:
    $ 11.48万
  • 项目类别:
Comparative Genomics to Identify Functional Blocks & HGT
比较基因组学来识别功能模块
  • 批准号:
    7064837
  • 财政年份:
    2005
  • 资助金额:
    $ 11.48万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了