Modulation of Neuronal Ion Channels by 2nd Messengers
第二信使对神经元离子通道的调节
基本信息
- 批准号:7236619
- 负责人:
- 金额:$ 31.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 4-KinaseAffinityArachidonic AcidsBehaviorBindingBiochemicalBiochemistryBiosensorBiotinylationBrainCalmodulinCellsChimera organismChromosome PairingComplementary DNAComplexConsciousness DisordersCouplesDependenceDevelopmentDiseaseElectricityElectrophysiology (science)ElementsEmotionalEmotionsEpilepsyFaceFamilyFluorescenceFluorescence Resonance Energy TransferFundingGTP-Binding ProteinsGangliaGoalsHealthHumanHydrolysisImaging TechniquesIndividualInterventionIon ChannelLifeMammalian CellMeasurementMeasuresMediatingMedicalMembraneMemoryMethodsMolecularMolecular BiologyMolecular Mechanisms of ActionMonitorMoodsMotionMuscleMyxoid cystNerveNervous system structureNeuronsOrganOrganismPathway interactionsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipase CPhosphoric Monoester HydrolasesPhosphotransferasesPlayPoint MutationPotassium ChannelPreparationProbabilityProteinsRangeReceptor SignalingRegulationRegulatory ElementResearchResearch PersonnelRoleSignal PathwaySignal TransductionSignaling MoleculeSiteSpecificitySpectrum AnalysisSynapsesSyndromeSystemTestingTherapeutic InterventionThinkingWorkanalogbaseneuronal excitabilityneurotransmitter releasenoveloptical imagingpatch clampphosphatidylinositol phosphateprogramsprotein activationreceptorreceptor couplingreconstitutionresearch studysuccesstissue/cell culturetooltraffickingvoltage
项目摘要
DESCRIPTION (provided by applicant): Ion channel currents are the fundamental units of electrical activity in most organisms. In our nervous system, K+ and Ca2+ channels are critical, and their regulation provides a way to directly control neuronal excitability and release of neurotransmitter at synapses. The modulations are crucial to basic nervous function and their understanding should contribute to novel modes of medical interventions for a range of disorders involving the brain, nerves and muscles. We focus primarily on the family of Kv7 (KCNQ/M-type) K+ channels that underlies several neuronal K+ currents and on Cav2.2 (N-type) Ca2+ channels. In particular, we seek to elucidate the molecular mechanisms of several modulatory pathways that act on these types of ion channels. We use both a heterologous system in which cDNA clones of the channels, receptors and signaling molecules are expressed in mammalian tissue-culture cells, and a preparation of primary sympathetic neurons. Two pathways that we study have in common receptors coupled to the Gq/11 family of G proteins, the activation of phospholipase C, and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). Both Kv7 and Cav2.2 channels have emerged as being regulated by PIP2, and in this project we will investigate how PIP2 interacts with the channels, the site(s) of the interaction, and the parts of the channel proteins that mediate the regulation of gating. Stimulation of certain raises intracellular Ca2+ and acts on Kv7 channels in concert with calmodulin (CaM). We will further investigate the molecular mechanism by which Ca2+/CaM acts. Other Gq/11-coupled receptors do not raise intracellular Ca2+ and act by depleting the membrane of PIP2. Using a variety of approaches, we will probe this specificity in receptor action. The tools to be used include patch-clamp electrophysiology, molecular biology, biochemistry, and advanced imaging techniques. The molecules and signaling pathways that we study have broad relevance to human health and disease. Kv7 channels play a dominant role in regulating excitability of neurons, and their regulation likely underlies changes in emotional state, memory and regulation of body organs. Dysfunctional Kv7 channels cause specific epileptic syndromes. The modulation of Cav2.2 channels regulates release of neurotransmitter which is the basic signal at synapses between neurons. Thus, our research should provide the basis for the development of novel modes of therapeutic intervention for a variety of nervous diseases. Lay summary: This project studies how ion channels, which mediate the electricity in nerve cells, are regulated. We investigate these signals at the level of the molecule and the individual living cell using biophysical and molecular tools. We seek to understand this regulation of the nervous system that underlies the complex phenomena of human thought, emotion and behavior. Our findings may help to alleviate the many diseases of mood, motion and consciousness that are disorders of nervous function.
描述(由申请人提供):离子通道电流是大多数生物体电活动的基本单位。在我们的神经系统中,K+和Ca2+通道是至关重要的,它们的调节提供了一种直接控制神经元兴奋性和突触神经递质释放的方法。这些调节对基本神经功能至关重要,对它们的理解应该有助于为一系列涉及大脑、神经和肌肉的疾病提供新的医疗干预模式。我们主要关注几个神经元K+电流基础的Kv7 (KCNQ/ m型)K+通道家族和Cav2.2 (n型)Ca2+通道。特别是,我们试图阐明作用于这些类型离子通道的几种调节途径的分子机制。我们使用了一种异源系统,其中通道、受体和信号分子的cDNA克隆在哺乳动物组织培养细胞中表达,并制备了初级交感神经元。我们所研究的两种途径在G蛋白的Gq/11家族中有共同的受体偶联,磷脂酶C的激活和磷脂酰肌醇4,5-二磷酸(PIP2)的水解。Kv7和Cav2.2通道都受到PIP2的调控,在这个项目中,我们将研究PIP2如何与这些通道相互作用,相互作用的位点,以及介导门控调节的通道蛋白部分。某些刺激提高细胞内Ca2+,并与钙调素(CaM)协同作用于Kv7通道。我们将进一步研究Ca2+/CaM作用的分子机制。其他Gq/11偶联受体不会升高细胞内Ca2+,而是通过耗尽PIP2膜起作用。使用多种方法,我们将探讨受体作用的这种特异性。使用的工具包括膜片钳电生理学、分子生物学、生物化学和先进的成像技术。我们研究的分子和信号通路与人类健康和疾病有着广泛的相关性。Kv7通道在调节神经元兴奋性中起主导作用,其调节可能是情绪状态、记忆和身体器官调节变化的基础。功能失调的Kv7通道引起特定的癫痫综合征。Cav2.2通道的调节调节神经递质的释放,神经递质是神经元间突触的基本信号。因此,我们的研究应该为开发针对各种神经疾病的新型治疗干预模式提供基础。概要:本项目研究神经细胞中介导电流的离子通道是如何被调节的。我们使用生物物理和分子工具在分子和个体活细胞水平上研究这些信号。我们试图理解神经系统的这种调节,它是人类思想、情感和行为的复杂现象的基础。我们的发现可能有助于减轻许多情绪、运动和意识疾病,这些疾病是神经功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK S SHAPIRO其他文献
MARK S SHAPIRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK S SHAPIRO', 18)}}的其他基金
Targeting specific interactions between A-kinase Anchoring Proteins (AKAPs) and ion channels with cell-permeant peptides as a novel mode of therapeutic intervention against pain disorders
针对 A 激酶锚定蛋白 (AKAP) 和离子通道与细胞渗透肽之间的特异性相互作用,作为针对疼痛疾病的治疗干预的新模式
- 批准号:
9815836 - 财政年份:2019
- 资助金额:
$ 31.17万 - 项目类别:
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons
单个和不同的离子通道聚集成复合物,以及它们的功能耦合,由神经元中的 A-激酶锚定蛋白 79/150 介导
- 批准号:
9212929 - 财政年份:2015
- 资助金额:
$ 31.17万 - 项目类别:
Mechanism and functional role of AKAP79/150 in M current control and excitability
AKAP79/150 在 M 电流控制和兴奋性中的机制和功能作用
- 批准号:
7728381 - 财政年份:2009
- 资助金额:
$ 31.17万 - 项目类别:
Mechanism and functional role of AKAP79/150 in M current control
AKAP79/150 在 M 电流控制中的机制和功能作用
- 批准号:
8549448 - 财政年份:2009
- 资助金额:
$ 31.17万 - 项目类别:
Modulation of neuronal ion channels by 2nd messengers
第二信使对神经元离子通道的调节
- 批准号:
6898239 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
Modulation of Neuronal Ion Channels by 2nd Messengers
第二信使对神经元离子通道的调节
- 批准号:
8139550 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
Mechanisms and functional role of lipid-mediated modulation of neuronal channels
脂质介导的神经通道调节的机制和功能作用
- 批准号:
8462002 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
Modulation of Neuronal Ion Channels by 2nd Messengers
第二信使对神经元离子通道的调节
- 批准号:
7666411 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
Mechanisms and functional role of lipid-mediated modulation of neuronal channels
脂质介导的神经通道调节的机制和功能作用
- 批准号:
8217085 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
Mechanisms and functional role of lipid-mediated modulation of neuronal channels
脂质介导的神经通道调节的机制和功能作用
- 批准号:
8132752 - 财政年份:2002
- 资助金额:
$ 31.17万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Continuing Grant