New Aspects of Reverse Mathematics
逆向数学的新方面
基本信息
- 批准号:2881775
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical arguments start from a collection of assumptions called 'axioms' and reason logically to deduce conclusions that are called 'theorems.' These deductions of theorems from axioms are called 'proofs.' For example, the famous Pythagorean theorem can be proved from basic axioms about geometry. Given a proof of a theorem, one may then ask how efficiently the axioms are being used. Maybe some of the axioms are extraneous to the argument at hand. Maybe some of the axioms are overkill, and another proof of the same theorem can be given starting from much milder assumptions. Or maybe every axiom is used to its full extent, and it is impossible to get away with less. 'Reverse mathematics' is a program in mathematical logic designed to address this sort of question. Given a mathematical theorem, what are the precise axioms required to prove it? Reverse mathematics was introduced by H. Friedman in the 1970s, greatly expanded by S. Simpson, and today is a major research initiative at the crossroads of computability theory and proof theory. The basic idea works as follows. Suppose you want to show that a certain strong axiom A is necessary in the proof of some theorem T. To do that, treat theorem T as a new axiom and try to prove axiom A as a theorem using only T and some weak axioms that allow for basic mathematical manipulations. If this can be done, it means that theorem T implies axiom A, which means that axiom A is necessary to obtain theorem T in the first place. Such proofs of axioms from theorems rather than theorems from axioms are called 'reversals' and are what give reverse mathematics its name.Much of the work in reverse mathematics analyzes theorems from combinatorics, from algebra, and from analysis on complete separable metric spaces. This project pushes the program into areas where less work has been done, such as analysis and topology on more general spaces. One focus is metrization theorems, which establish conditions under which mathematical spaces can be described via notions of distance. Reverse mathematics gives a formal framework for discussing the complexities of mathematical theorems, how theorems relate to each other, and what sort of arguments are necessary to prove what sort of theorems. The reverse mathematics program is also of potential interest to those working on formalized mathematics and proof assistants. Part of research in reverse mathematics involves producing 'semi-formal' proofs in ordinary language, but where one keeps careful track of the logical system in which one is working. This is a good intermediate point between ordinary informal textbook proofs and fully computerized proofs.
数学论证从一系列被称为“公理”的假设出发,通过逻辑推理推导出被称为“定理”的结论。这些从公理推导出的定理叫做“证明”。例如,著名的毕达哥拉斯定理可以从几何的基本公理中得到证明。给出一个定理的证明,人们可能会问,这些公理的使用效率有多高。也许有些公理与我们的论点无关。也许有些公理是矫枉过正,同样的定理的另一个证明可以从更温和的假设开始。或者,每一条公理都被充分利用了,少一条公理就不可能逃脱惩罚。“逆向数学”是一个数学逻辑程序,旨在解决这类问题。给定一个数学定理,证明它所需要的精确公理是什么?逆向数学是由H.弗里德曼在20世纪70年代提出的,由S。辛普森,今天是一个重大的研究举措,在十字路口的可计算性理论和证明理论。其基本思想如下。假设你想证明某个强公理A在某个定理T的证明中是必要的。要做到这一点,将定理T视为一个新的公理,并尝试仅使用T和一些允许基本数学操作的弱公理来证明公理A为定理。如果可以做到这一点,这意味着定理T蕴涵公理A,这意味着公理A是获得定理T所必需的。这种从定理而不是从公理中证明公理的方法被称为“逆向”,这也是逆向数学的名称。逆向数学中的大部分工作都是从组合学、代数和完全可分度量空间的分析中分析定理。该项目将程序推向工作较少的领域,例如更一般空间的分析和拓扑。一个焦点是度量化定理,它建立了数学空间可以通过距离概念描述的条件。逆向数学提供了一个正式的框架来讨论数学定理的复杂性,定理如何相互关联,以及证明什么样的定理需要什么样的论证。逆向数学程序也对那些从事形式化数学和证明助手的人有潜在的兴趣。逆向数学的部分研究涉及用普通语言产生“半形式”证明,但其中一个保持仔细跟踪的逻辑系统,其中一个正在工作。这是普通的非正式教科书证明和完全计算机化的证明之间的一个很好的中间点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant