MITOCHONDRIAL CALPAIN MEDIATED RENAL CELL DEATH
线粒体钙蛋白酶介导的肾细胞死亡
基本信息
- 批准号:7103703
- 负责人:
- 金额:$ 27.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this project is to elucidate the events that cause mitochondrial dysfunction in ischemia/reperfusion- and toxicant-induced acute renal failure (ARF), and to identify a therapeutic approach that prevents the mitochondrial dysfunction and reduces ARF. The role of mitochondrial dysfunction and disruption of Ca 2+ homeostasis in renal cell injury and death has been demonstrated in numerous models of ARF and nephrotoxicity. The importance of calpains (Ca2+-activated neutral cysteine proteases) in renal proximal tubule cellular (RPTC) injury and death produced by hypoxia/reoxygenation and toxicants has been shown using calpain inhibitors. In particular, two dissimilar calpain inhibitors not only blocked hypoxia/reoxygenation RPTC death, but also blocked the mitochondrial dysfunction and promoted the recovery of respiration during reoxygenation. These results strongly support a key role for calpains in mitochondrial dysfunction. The above experiments showing calpain inhibitor protection of mitochondrial function in RPTC, suggest that mitochondria may contain a calpain. In a number of diverse preliminary experiments using isolated renal cortical mitochondria (RCM) we have obtained additional evidence of a novel mitochondrial calpain that is responsible for mitochondrial dysfunction. These data resulted in the hypothesis that mitochondrial Ca 2+- uptake leads to the activation of a mitochondrial calpain, which causes the mitochondrial dysfunction and ultimately results in RPTC death and ARF. The specific aims of this application are: Specific Aim I: Identify and characterize the mitochondrial calpain and examine its regulation in isolated RCM and RPTC. Specific Aim II: Elucidate the mechanism of mitochondrial calpain-mediated mitochondrial dysfunction in RPTC and isolated RCM, and identify the mitochondrial protein targets of mitochondrial calpain. Specific Aim III: Determine the effectiveness of currently described calpain inhibitors on mitochondrial calpain and develop new specific inhibitors of mitochondrial calpain using novel, non-natural amino acid analogues and determine their effectiveness in RPTC and isolated RCM. Specific Aim IV: Determine the efficacy of current and/or developed calpain inhibitors in an in vivo model of mitochondrial dysfunction and ARF. Completion of these Specific Aims will add significantly to our basic understanding of cell injury and death, particularly events mediating mitochondrial dysfunction. Further, we will identify a mitochondrial calpain and develop novel calpain inhibitors, including those that are mitochondrial calpain specific. Ultimately, these studies may lead to the development of therapeutic agents that improve clinical outcomes in patients with ARF.
DESCRIPTION (provided by applicant): The long-term goal of this project is to elucidate the events that cause mitochondrial dysfunction in ischemia/reperfusion- and toxicant-induced acute renal failure (ARF), and to identify a therapeutic approach that prevents the mitochondrial dysfunction and reduces ARF. The role of mitochondrial dysfunction and disruption of Ca 2+ homeostasis in renal cell injury and death has been demonstrated in numerous models of ARF and nephrotoxicity. The importance of calpains (Ca2+-activated neutral cysteine proteases) in renal proximal tubule cellular (RPTC) injury and death produced by hypoxia/reoxygenation and toxicants has been shown using calpain inhibitors. In particular, two dissimilar calpain inhibitors not only blocked hypoxia/reoxygenation RPTC death, but also blocked the mitochondrial dysfunction and promoted the recovery of respiration during reoxygenation. These results strongly support a key role for calpains in mitochondrial dysfunction. The above experiments showing calpain inhibitor protection of mitochondrial function in RPTC, suggest that mitochondria may contain a calpain. In a number of diverse preliminary experiments using isolated renal cortical mitochondria (RCM) we have obtained additional evidence of a novel mitochondrial calpain that is responsible for mitochondrial dysfunction. These data resulted in the hypothesis that mitochondrial Ca 2+- uptake leads to the activation of a mitochondrial calpain, which causes the mitochondrial dysfunction and ultimately results in RPTC death and ARF. The specific aims of this application are: Specific Aim I: Identify and characterize the mitochondrial calpain and examine its regulation in isolated RCM and RPTC. Specific Aim II: Elucidate the mechanism of mitochondrial calpain-mediated mitochondrial dysfunction in RPTC and isolated RCM, and identify the mitochondrial protein targets of mitochondrial calpain. Specific Aim III: Determine the effectiveness of currently described calpain inhibitors on mitochondrial calpain and develop new specific inhibitors of mitochondrial calpain using novel, non-natural amino acid analogues and determine their effectiveness in RPTC and isolated RCM. Specific Aim IV: Determine the efficacy of current and/or developed calpain inhibitors in an in vivo model of mitochondrial dysfunction and ARF. Completion of these Specific Aims will add significantly to our basic understanding of cell injury and death, particularly events mediating mitochondrial dysfunction. Further, we will identify a mitochondrial calpain and develop novel calpain inhibitors, including those that are mitochondrial calpain specific. Ultimately, these studies may lead to the development of therapeutic agents that improve clinical outcomes in patients with ARF.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rick G Schnellmann其他文献
Rick G Schnellmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rick G Schnellmann', 18)}}的其他基金
Enhanced Mitochondrial Function to Increase Effectiveness of Post-Stroke Rehabilitation
增强线粒体功能以提高中风后康复的有效性
- 批准号:
10490270 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
5-HT1F receptor agonism as a novel therapeutic strategy following spinal cord injury
5-HT1F 受体激动剂作为脊髓损伤后的新型治疗策略
- 批准号:
9890471 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
5-HT1F receptor agonism as a novel therapeutic strategy following spinal cord injury
5-HT1F 受体激动剂作为脊髓损伤后的新型治疗策略
- 批准号:
10300436 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
Enhanced Mitochondrial Function to Increase Effectiveness of Post-Stroke Rehabilitation
增强线粒体功能以提高中风后康复的有效性
- 批准号:
10268186 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
5-HT1F receptor agonism as a novel therapeutic strategy following spinal cord injury
5-HT1F 受体激动剂作为脊髓损伤后的新型治疗策略
- 批准号:
10058204 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
5-HT1F receptor agonism as a novel therapeutic strategy following spinal cord injury
5-HT1F 受体激动剂作为脊髓损伤后的新型治疗策略
- 批准号:
10516033 - 财政年份:2019
- 资助金额:
$ 27.09万 - 项目类别:
Urinary Biomarkers of Renal Mitochondrial Dysfunction
肾线粒体功能障碍的尿液生物标志物
- 批准号:
9055870 - 财政年份:2013
- 资助金额:
$ 27.09万 - 项目类别:
Urinary Biomarkers of Renal Mitochondrial Dysfunction
肾线粒体功能障碍的尿液生物标志物
- 批准号:
8522644 - 财政年份:2013
- 资助金额:
$ 27.09万 - 项目类别:
5-HT Stimulation of Mitochondrial Biogenesis and Acute Kidney Injury
5-HT 刺激线粒体生物发生和急性肾损伤
- 批准号:
8198361 - 财政年份:2010
- 资助金额:
$ 27.09万 - 项目类别:
5-HT Stimulation of Mitochondrial Biogenesis and Acute Kidney Injury
5-HT 刺激线粒体生物发生和急性肾损伤
- 批准号:
8597388 - 财政年份:2010
- 资助金额:
$ 27.09万 - 项目类别:
相似海外基金
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10322143 - 财政年份:2021
- 资助金额:
$ 27.09万 - 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10154169 - 财政年份:2021
- 资助金额:
$ 27.09万 - 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
- 批准号:
10540812 - 财政年份:2021
- 资助金额:
$ 27.09万 - 项目类别:
Boron accelerates cultured osteoblastic cell activity through calcium flux
硼通过钙流加速培养的成骨细胞活性
- 批准号:
25670812 - 财政年份:2013
- 资助金额:
$ 27.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Claudin 12 mediates paracellular calcium flux between opossum kidney cell monolayers
Claudin 12 介导负鼠肾细胞单层之间的细胞旁钙通量
- 批准号:
240882 - 财政年份:2011
- 资助金额:
$ 27.09万 - 项目类别:
Molecules & Mechanisms Mediating Proximal Tubular Calcium Flux
分子
- 批准号:
244633 - 财政年份:2011
- 资助金额:
$ 27.09万 - 项目类别:
Salary Programs
Mercury induced disruptions of cellular calcium flux in paired neurons from lymnaea affect synaptic transmission and elicit apoptosis
汞诱导的成对神经元中细胞钙通量的破坏影响突触传递并引发细胞凋亡
- 批准号:
348881-2007 - 财政年份:2007
- 资助金额:
$ 27.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's