Engineering skeletal muscle using a humanoid bioreactor platform
使用人形生物反应器平台工程骨骼肌
基本信息
- 批准号:2886432
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Skeletal muscle is the largest organ system in the body by mass and is necessary to generate forces for movement and locomotion. Unlike tendons and ligaments, muscle tissue can easily regenerate itself when subjected to minor injuries. However, irreversible loss of muscle tissue affects thousands of patients per year in the UK alone and can be caused by severe conditions such as myopathy, large trauma (e.g. blast injuries) and removal of cancer tissue. Muscle injuries and diseases are becoming more frequent as our population is aging, which causes an increasing societal and economic burden. As current repair strategies are not satisfactory, the awareness of the need for new repair approached is increasing in academia, in industry and also for end users. Tissue engineering is a promising repair strategy for skeletal muscle. This approach involves the use of biomaterials, cells and bioreactor systems, the combination of which allow control of cell culture conditions to provide physical stimulation to the cell-biomaterial constructs to engineer muscle in vitro. Both mechanical and electrical stimulation are relevant to muscle tissue engineering and have been shown to improve the improve cell proliferation and differentiation.Our research group has extensive experience of biomaterial development and testing, including use of decellularized biological tissues, hydrogels and electrospun materials. We have also recently developed a unique bioreactor system that uses a musculoskeletal humanoid robotic arm to mimic the motion and forces observed at the human shoulder joint and actuate cell-biomaterial constructs (EPSRC-funded Humanoid Bioreactor project, EP/S003509/1). Musculoskeletal humanoids can replicate the inner structures, such as muscles, tendons or bones, and the biomechanics of the human body using strings actuated by electric motors. To develop the humanoid bioreactor platform, we combined these robots with soft, flexible bioreactor chambers that host the cell-biomaterial constructs and maintain them alive for long periods of time. While our efforts have so far been focused on tendon tissue engineering for rotator cuff repair applications, the same platform can be applied to engineer skeletal muscle.This PhD project will focus on applying the humanoid bioreactor system to skeletal muscle tissue engineering. The aim is to determine the importance of physiologically-relevant mechanical stimulation and electrical stimulation for muscle tissue engineering. This will contribute to generating better quality muscle grafts. If such an approach is successful, it will provide a reliable and unlimited source of muscle autografts which would translate into safer and more cost-effective patient care.To achieve this goal, a scaffold able to support skeletal muscle tissue growth will need to be developed, either through muscle decellularization or hydrogel approaches. The existing soft chamber of the humanoid bioreactor, currently employed for tendon tissue engineering, will be adapted to host the novel muscle scaffold, allowing both its mechanical and electrical stimulation. The impact of such stimulations on the colonization of the scaffold by skeletal muscle cells will be investigated. The functionality of the engineered muscles will then need to be evaluated. This highly multidisciplinary project involves various aspects of bioengineering, biology, bioelectronics and biomechanics. Although the end application proposed here is to support the regeneration of large muscle defects, other areas in science could benefit from this project. The development of scaffold or biomaterials using this more physiological platform will be of significant interest to other researchers in the field of tissue engineering, as the strategy could be applied to other tissues. Additionally, this project will contribute to the development of bio-actuators, which would benefit developments in bio-robotics and soft robotics.
骨骼肌是人体最大的器官系统,是产生运动和运动力量所必需的。与肌腱和韧带不同,肌肉组织在受到轻微伤害时可以很容易地自我再生。然而,仅在英国,每年就有成千上万的患者受到肌肉组织不可逆转的损失的影响,这种损失可能是由肌病、大创伤(例如爆炸伤害)和癌症组织切除等严重情况引起的。随着人口老龄化,肌肉损伤和疾病变得越来越频繁,这造成了越来越大的社会和经济负担。由于目前的维修策略不令人满意,学术界、工业界和最终用户越来越意识到需要新的维修方法。组织工程是一种很有前途的骨骼肌修复策略。这种方法包括使用生物材料、细胞和生物反应器系统,它们的组合允许控制细胞培养条件,为细胞-生物材料结构提供物理刺激,以在体外工程肌肉。机械和电刺激都与肌肉组织工程有关,并已被证明可以促进细胞的增殖和分化。我们的研究小组在生物材料开发和测试方面拥有丰富的经验,包括使用脱细胞生物组织,水凝胶和静电纺材料。我们最近还开发了一种独特的生物反应器系统,该系统使用肌肉骨骼类人机械臂来模拟在人类肩关节观察到的运动和力,并驱动细胞-生物材料结构(epsrc资助的类人生物反应器项目,EP/S003509/1)。肌肉骨骼类人机器人可以复制内部结构,如肌肉、肌腱或骨骼,以及使用由电动机驱动的弦来复制人体的生物力学。为了开发类人生物反应器平台,我们将这些机器人与柔软、灵活的生物反应器室结合起来,这些生物反应器室容纳细胞-生物材料结构,并使它们长时间存活。到目前为止,我们的努力主要集中在肌腱组织工程上,用于肩袖修复应用,同样的平台可以应用于工程骨骼肌。本博士项目将重点研究仿人生物反应器系统在骨骼肌组织工程中的应用。目的是确定与生理相关的机械刺激和电刺激对肌肉组织工程的重要性。这将有助于产生质量更好的肌肉移植物。如果这种方法是成功的,它将提供一个可靠和无限的自体肌肉移植来源,这将转化为更安全、更经济的患者护理。为了实现这一目标,需要通过肌肉脱细胞或水凝胶方法来开发能够支持骨骼肌组织生长的支架。现有的用于肌腱组织工程的类人生物反应器的软腔将适应于容纳新型肌肉支架,允许其机械和电刺激。这种刺激对骨骼肌细胞在支架上定植的影响将被研究。然后需要评估工程肌肉的功能。这个高度跨学科的项目涉及生物工程、生物学、生物电子学和生物力学的各个方面。虽然这里提出的最终应用是支持大肌肉缺陷的再生,但其他科学领域也可以从这个项目中受益。利用这种更生理的平台开发支架或生物材料将引起组织工程领域其他研究人员的极大兴趣,因为该策略可以应用于其他组织。此外,该项目将有助于生物致动器的发展,这将有利于生物机器人和软机器人的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
骨骼肌中胰高血糖素受体的表达及其调控血糖稳态的作用与机制研究
- 批准号:82370820
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于内质网应激-自噬反应研究“脾主肌肉”理论下推拿脾经治疗骨骼肌损伤的作用机制
- 批准号:81904317
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
骨骼肌特定磷代谢物分子的影像学方法研究
- 批准号:81171339
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
microRNA-378的细胞间通讯及其对猪生前骨骼肌生长波的调控
- 批准号:31171192
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
肌肉挫伤后组织中时间相关基因表达与损伤经历时间研究
- 批准号:81001347
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
- 批准号:
10719721 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Engineering Mesenchymal Stromal Cells to treat Muscle Fibrosis
工程间充质基质细胞治疗肌肉纤维化
- 批准号:
10904157 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using functional readouts from engineering models of innervated skeletal muscle to assess the efficacy of CRISPR-based c9orf72 ALS gene therapies
使用受神经支配的骨骼肌工程模型的功能读数来评估基于 CRISPR 的 c9orf72 ALS 基因疗法的功效
- 批准号:
10653223 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Engineering Highly Functional Pre-Vascularized Human Skeletal Muscle for In Vitro and In Vivo Applications
工程设计用于体外和体内应用的高功能预血管化人体骨骼肌
- 批准号:
10535766 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Engineering Highly Functional Pre-Vascularized Human Skeletal Muscle for In Vitro and In Vivo Applications
工程设计用于体外和体内应用的高功能预血管化人体骨骼肌
- 批准号:
10663067 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Rational Engineering Design Approach to Minimizing the Off-Target Effects of Baroreceptor Activation Therapy
最小化压力感受器激活疗法的脱靶效应的合理工程设计方法
- 批准号:
10653217 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Engineering AAV capsids for enhanced transduction of skeletal muscle
工程化 AAV 衣壳以增强骨骼肌的转导
- 批准号:
10290483 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




