EPSRC DTP Research Studentship: Developing a new electro-photosynthesis system for CO2 fixation
EPSRC DTP 研究奖学金:开发用于二氧化碳固定的新型电光合作用系统
基本信息
- 批准号:2886510
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the era of global warming the pursuit of sustainable, low or zero-carbon energy solutions has emerged as a pressing imperative. Yet, the realization of a truly sustainable future hinges not only on the successful decarbonization of energy production, but also on the simultaneous reduction of atmospheric CO2 levels and provision of net-zero or net-negative chemical production. These imperatives direct us towards electrosynthesis as a transformative technology, addressing the symbiotic challenges of decarbonization of production and atmospheric carbon removal, using solely clean electrical energy and/or sunlight. Microbial Electrosynthesis is a process by which bacteria convert low energy substrates into high energy products using microbes as a catalyst (reaction centre). When used for CO2 capture these systems have key inputs of: CO2, Water, and electricity (supplied by a solar panel) with potentially limitless potential outputs. By engineering a light harnessing pathway into the bacteria, we have already shown that we can increase cell metabolism, further driving the efficiency of an artificial photosynthetic system driven by microbial electrosynthesis powered by a solar panel.This project primarily aims to answer the question of whether, "Microbial Electrochemical based Artificial Photosynthetic Systems" (MEBAPS) can be a scalable solution to the problem of Carbon capture and utilisation. We intend to do this by meeting the following key aims:1. Assess the impact of key operational factors on system performance (e.g. Flow rates, Reactor Design parameters)2. Develop a platform for rapid testing of Bio-Electrochemical Systems3. Developed detailed engineering models to predict system bottlenecks and validate models empirically.4. Use a combined experimental-modelling approach to rapidly assess solutions to system bottlenecks.5. Apply computational methods (Quantum Modelling/Metabolic Modelling/Molecular Modelling/ML) to assess methods to enhance light harnessing pathways.6. Assess the viability of light enhanced microbial electrosynthesis for large scale long duration carbon utilisation using developed models.As highlighted by the research questions this research focusses on moving MEBAPS away from the bench scale and assessing system viability. Existing research on microbial electrosynthesis and artificial photosynthesis is primarily centred around proof of concept and low-level scientific developments, typically using experimental or modelling methods. The proposed research methodology is unique in this field for three reasons:1. It Synergistically uses Modelling and experimentation for rapid development and design. 2. The light harnessing Pathway utilised is Microbial rather than physiochemical, hence the system has potentially lower costs and lower environmental impact while being self-healing and adapting.3. The technoeconomic model will be developed form the ground up, basing findings on low level device models that have been experimentally validated rather than solely using literature values.This project primarily falls within the Energy and decarbonisation theme, currently there is no significant industrial collaboration or collaboration outside of the university.
在全球变暖的时代,寻求可持续的、低碳或零碳能源解决方案已成为一项紧迫的任务。然而,实现真正可持续的未来不仅取决于能源生产的成功脱碳,还取决于同时降低大气中的二氧化碳水平和提供净零或净负化学品生产。这些必要性引导我们将电合成作为一种变革性技术,解决生产脱碳和大气碳去除的共生挑战,仅使用清洁电能和/或阳光。微生物电合成是一种利用微生物作为催化剂(反应中心)将低能量底物转化为高能量产物的过程。当用于CO2捕获时,这些系统具有关键输入:CO2,水和电力(由太阳能电池板提供),具有潜在的无限潜在输出。通过将光利用途径工程化到细菌中,我们已经证明我们可以增加细胞代谢,进一步提高由太阳能电池板供电的微生物电合成驱动的人工光合系统的效率。该项目主要旨在回答以下问题:“基于微生物电化学的人工光合系统”(MEBAPS)可以是碳捕获和利用问题的可扩展解决方案。我们打算通过实现以下主要目标来实现这一目标:1.评估关键操作因素对系统性能的影响(如流速、反应器设计参数)2.开发生物电化学系统快速测试平台3。开发详细的工程模型来预测系统瓶颈并验证模型.使用一种结合实验建模的方法来快速评估系统故障的解决方案。应用计算方法(量子建模/代谢建模/分子建模/ML)评估增强光利用路径的方法。6.使用开发的模型评估大规模长时间碳利用的光增强微生物电合成的可行性。正如研究问题所强调的那样,本研究的重点是将MEBAPS从实验室规模转移出去,并评估系统的可行性。关于微生物电合成和人工光合作用的现有研究主要集中在概念验证和低水平的科学发展上,通常使用实验或建模方法。所提出的研究方法在这一领域是独一无二的,原因有三:1。它协同使用建模和实验来快速开发和设计。2.利用的光利用途径是微生物而不是物理化学的,因此该系统具有潜在的较低成本和较低的环境影响,同时具有自我修复和适应能力。该技术经济模型将从头开始开发,基于已通过实验验证的低水平设备模型的研究结果,而不是仅仅使用文献值。该项目主要福尔斯属于能源和脱碳主题,目前没有重大的工业合作或大学以外的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
STFC Nottingham PaA 2023 DTP
STFC 诺丁汉 PaA 2023 DTP
- 批准号:
ST/Y509437/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Training Grant














{{item.name}}会员




