A software tool for optimizing the solubility of therapeutic proteins.

用于优化治疗性蛋白质溶解度的软件工具。

基本信息

  • 批准号:
    7273436
  • 负责人:
  • 金额:
    $ 12.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-26 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The therapeutic value of any protein can be easily compromised by low solubility, which often adversely affects purification, yield, activity, shelf-life, and delivery. Solubility concerns are thus frequent obstacles to the development and subsequent FDA approval of pharmaceutical compounds derived from protein models. These facts make the development of a quantifiable description of protein solubility, as well as a design platform that can be used to rationally and efficiently re-engineer therapeutic proteins with increased solubility, a high priority. Previous studies on a database of leptin mutants have shown that a sequence-based analysis of leptin solubility, in which amino acid properties (e.g., hydrophobicity, charge and solvation free energy) are summed over a protein sequence and then correlated to experimental solubility measurements, can provide high predictability (0.96 correlation) for additional mutants when information for similar mutations is already in the training dataset. However, predictability fails for mutation types not found in the training set. In contrast, when ensemble-based parameters derived from structural models of the individual mutants are correlated to the experimental solubilities, predictability readily extends to substitutions unknown to the training set, and shows an apparent structural-thermodynamic component to the solubility of proteins. In a blind test of this model on an additional mutant dataset, the ensemble- based approach predicted whether or not a mutation will increase or decrease leptin solubility with 86% accuracy, with an overall correlation of 0.80 with the actual experimental values. Initial tests also indicate that the ensemble-based parameterization of leptin solubility is readily transferable to non- leptin structures. The goal of this Phase I SBIR is to provide a proof-of-principal of the generality of the ensemble-based model of protein solubility by applying the same parameterization routine used on leptin to a second medically relevant compound, the small mitogenic protein called human epidermal growth factor (EGF). EGF is a target for cancer inhibitor drugs, making analogs designed for optimal solution properties likely to be valuable to the pharmaceutical industry. In a subsequent Phase II project application, a general and automated optimization strategy for therapeutic proteins will be developed using human erythropoietin and human granulocyte-colony stimulating factor as the test systems.
描述(由申请人提供):任何蛋白质的治疗价值都容易受到低溶解度的影响,这通常会对纯化、产率、活性、保质期和递送产生不利影响。因此,溶解度问题是开发和随后FDA批准衍生自蛋白质模型的药物化合物的常见障碍。这些事实使得开发蛋白质溶解度的可量化描述以及可用于合理有效地重新设计具有增加溶解度的治疗性蛋白质的设计平台成为高度优先事项。先前对瘦素突变体数据库的研究表明,基于序列的瘦素溶解度分析,其中氨基酸特性(例如,疏水性、电荷和溶剂化自由能)在蛋白质序列上相加,然后与实验溶解度测量值相关,当类似突变的信息已经在训练数据集中时,可以为额外的突变体提供高的可预测性(0.96相关性)。然而,对于在训练集中未发现的突变类型,可预测性失败。与此相反,当来自个体突变体的结构模型的基于集合的参数与实验溶解度相关时,可预测性容易地延伸到训练集未知的取代,并显示出蛋白质溶解度的明显的结构-热力学成分。在该模型对另外的突变体数据集的盲测中,基于集合的方法以86%的准确度预测突变是否会增加或减少瘦素溶解度,与实际实验值的总体相关性为0.80。初始测试还表明,瘦素溶解度的基于系综的参数化可容易地转移到非瘦素结构。该I期SBIR的目标是通过将用于瘦素的相同参数化例程应用于第二种医学相关化合物(称为人表皮生长因子(EGF)的小促有丝分裂蛋白)来提供基于整体的蛋白质溶解度模型的一般性的原理证明。EGF是癌症抑制剂药物的靶点,使设计用于最佳溶液性质的类似物可能对制药行业有价值。在随后的II期项目申请中,将使用人促红细胞生成素和人粒细胞集落刺激因子作为测试系统开发治疗性蛋白质的通用和自动化优化策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN T WHITTEN其他文献

STEVEN T WHITTEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN T WHITTEN', 18)}}的其他基金

Quantitative Description of Phosphorylation Effects on Disordered Protein Structure
磷酸化对无序蛋白质结构影响的定量描述
  • 批准号:
    8940910
  • 财政年份:
    2015
  • 资助金额:
    $ 12.18万
  • 项目类别:
Antiviral Agents directed at West Nile Virus
针对西尼罗河病毒的抗病毒药物
  • 批准号:
    6752917
  • 财政年份:
    2003
  • 资助金额:
    $ 12.18万
  • 项目类别:
Antiviral Agents directed at West Nile Virus
针对西尼罗河病毒的抗病毒药物
  • 批准号:
    6644585
  • 财政年份:
    2003
  • 资助金额:
    $ 12.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了