Retinal Image Enhancement based on the Human Visual System
基于人类视觉系统的视网膜图像增强
基本信息
- 批准号:7340562
- 负责人:
- 金额:$ 10.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:Age related macular degenerationAlgorithmsApplications GrantsBlurClinicClinicalClinical ResearchColorComputer softwareConditionDataDevelopmentDevicesDiabetic RetinopathyDiagnosticDiseaseDoctor of PhilosophyElectronicsEntropyEnvironmentEvaluationFamilyFeedbackFilmFrequenciesFundusFutureGoalsGray unit of radiation doseHumanImageImage EnhancementImaging technologyLeadLightingMarketingMethodologyMethodsMetricMorphologic artifactsMydriaticsNatureNoiseNumbersOphthalmologistOpticsPatientsPhasePigmentation physiologic functionProcessPsychophysiologyPupilRangeRetinalRetinal DiseasesScreening procedureSensitivity and SpecificitySourceStagingStandards of Weights and MeasuresStructureSystemTechniquesTechnologyTestingTimeTodayTrainingVisual system structureabsorptionadaptive opticsbaseblindclinical Diagnosisclinically significantconceptconditioningcostdigitalexperienceimage processingimprovedinstrumentinterestprototyperesearch studysize
项目摘要
The objective of this project is to demonstrate a methodology for improving the quality of retinal images
taken with standard fundus camera. Kestrel has developed a family of algorithms that perform image retinal
enhancement through the implementation of a methods that are inspired from human visual system
mechanisms. Standard retinal images often suffer from illumination artifacts, large dynamic range in the
reflectance, and blurring.
In this project Kestrel will demonstrate its image quality enhancement algorithms on a wide variety of fundus
camera systems, including a digital non-mydriatic device, a mydriatic film camera, and a mydriatic mega-
pixel instrument. Our objective is to show, through controlled evaluations by ophthalmologists and highly
trained ophtalmic technicians, that our processed images result in significant improvements in image quality
and which in turn would result in improved sensitivity and specificity for grading or screening retinal images
for diseases such as diabetic retinopathy and age-related macular degeneration.
The commercial potential of this software is immense. A low-cost means for improving image quality will be
of interest to all retinal camera manufactures. The project will show that improvement can be realized for any
existing fundus camera, thereby opening up the market to all future and existing instruments.
这个计画的目的是要证明一种方法来改善视网膜影像的品质
使用标准眼底照相机拍摄。Kestrel开发了一系列算法,
通过实施一种受人类视觉系统启发的方法来增强
机制等标准视网膜图像通常遭受照明伪影、大的动态范围、以及高分辨率。
反射率和模糊。
在这个项目中,Kestrel将在各种眼底上展示其图像质量增强算法
照相机系统,包括数字非散瞳装置、散瞳胶片照相机和散瞳放大器,
像素仪器我们的目的是通过眼科医生的控制评估和高度评价,
经过培训的眼科技术人员,我们处理的图像导致图像质量的显着改善
这又将导致对视网膜图像进行分级或筛选的灵敏度和特异性的提高
用于治疗糖尿病视网膜病变和老年性黄斑变性等疾病。
这个软件的商业潜力是巨大的。用于改善图像质量的低成本手段将是
所有视网膜相机制造商都感兴趣。该项目将表明,改善可以实现任何
现有眼底照相机,从而为所有未来和现有仪器打开市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMEL BELKACEM-BOUSSAID其他文献
KAMEL BELKACEM-BOUSSAID的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAMEL BELKACEM-BOUSSAID', 18)}}的其他基金
Retinal Image Enhancement based on the Human Visual System
基于人类视觉系统的视网膜图像增强
- 批准号:
7108742 - 财政年份:2006
- 资助金额:
$ 10.01万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.01万 - 项目类别:
Research Grant














{{item.name}}会员




