Deformable registration for image-guided radiotherapy

图像引导放射治疗的变形配准

基本信息

  • 批准号:
    7220808
  • 负责人:
  • 金额:
    $ 4.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-29 至 2010-08-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this project is to improve the accuracy and precision of dose targeting in image-guided radiation treatment by accurately and automatically registering deformable tissues in diagnostic and treatment planning images. Recent advances in medical imaging and radiation therapy have the potential to improve patient care by noninvasively identifying the location and extent of cancer and by allowing physicians to escalate and target radiation dose to cancerous lesions while sparing surrounding healthy tissues. To compensate for significant changes that occur between diagnostic and treatment phases due to imaging requirements such as endorectal probes, patient position differences, weight change, and other factors, a new computational tool for deformable image registration will be developed and validated. Given a segmented reference image and an image obtained during treatment, the algorithm will generate a 3D representation of the tissues, estimate tissue displacements and deformations using a finite element model, account for uncertainty due to unknown model parameters, and output a mapping between the images. Low computation time is critical for clinical viability. The new method will be applied to register prostate CT or MRI/MRSI reference images to treatment images obtained using Megavoltage Cone-Beam GT (MV CBCT), a 3D imaging modality being developed to image the patient on the treatment table for Intensity-Modulated Radiation Therapy (IMRT). Validation of the method will be performed using bone outlines and by measuring registration errors for marker seeds that have been implanted inside the prostate in a subset of patients. The new software tool, targeted at prostate cancer treatment, aims to significantly improve patient care by enabling clinicians to improve conformality of dose to tissue types during radiation therapy. These improvements could significantly enhance public health by lowering recovery times, recurrence rates, and treatment costs for cancer patients.
描述(申请人提供):该项目的目标是通过准确和自动地配准诊断和治疗计划图像中的可变形组织来提高图像引导放射治疗中剂量靶向的准确性和精确度。医学成像和放射治疗的最新进展有可能通过非侵入性地识别癌症的位置和程度,并允许医生在保留周围健康组织的情况下,增加和靶向癌症病变的辐射剂量,从而改善患者的护理。为了补偿由于直肠内探头、患者位置差异、体重变化和其他因素等成像要求而在诊断和治疗阶段之间发生的显著变化,将开发和验证一种新的可变形图像配准计算工具。给定分割的参考图像和在处理期间获得的图像,该算法将生成组织的3D表示,使用有限元模型估计组织位移和变形,考虑未知模型参数的不确定性,并输出图像之间的映射。较低的计算时间对于临床生存至关重要。新方法将用于将前列腺CT或MRI/MRSI参考图像与使用Megavolage锥束GT(MV CBCT)获得的治疗图像配准,Megavolage锥束GT(MV CBCT)是一种正在开发的3D成像方式,用于在调强放射治疗(IMRT)的治疗台上对患者进行成像。该方法的验证将使用骨骼轮廓,并通过测量植入部分患者的前列腺内的标记种子的注册误差来进行。这款针对前列腺癌治疗的新软件工具旨在通过使临床医生能够提高放射治疗期间组织类型的剂量一致性,显著改善患者的护理。这些改进可以通过降低癌症患者的康复时间、复发率和治疗成本来显著提高公共健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ron Alterovitz其他文献

Ron Alterovitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ron Alterovitz', 18)}}的其他基金

Bronchoscopic Steerable Needles for Transparenchymal Access to Lung Nodules
支气管镜可操纵针用于经实质进入肺结节
  • 批准号:
    10250496
  • 财政年份:
    2017
  • 资助金额:
    $ 4.48万
  • 项目类别:
Bronchoscopic Steerable Needles for Transparenchymal Access to Lung Nodules
支气管镜可操纵针用于经实质进入肺结节
  • 批准号:
    9368478
  • 财政年份:
    2017
  • 资助金额:
    $ 4.48万
  • 项目类别:
Multi-lumen steerable needles for transoral access to lung nodules
用于经口腔进入肺结节的多腔可操纵针
  • 批准号:
    8744690
  • 财政年份:
    2013
  • 资助金额:
    $ 4.48万
  • 项目类别:
Multi-lumen steerable needles for transoral access to lung nodules
用于经口腔进入肺结节的多腔可操纵针
  • 批准号:
    8623350
  • 财政年份:
    2013
  • 资助金额:
    $ 4.48万
  • 项目类别:
Reaching inaccessible anatomy percutaneously via multi-lumen steerable needles
通过多腔可操纵针经皮到达难以接近的解剖结构
  • 批准号:
    8073933
  • 财政年份:
    2010
  • 资助金额:
    $ 4.48万
  • 项目类别:
Reaching inaccessible anatomy percutaneously via multi-lumen steerable needles
通过多腔可操纵针经皮到达难以接近的解剖结构
  • 批准号:
    7874963
  • 财政年份:
    2010
  • 资助金额:
    $ 4.48万
  • 项目类别:
Deformable registration for image-guided radiotherapy
图像引导放射治疗的变形配准
  • 批准号:
    7499634
  • 财政年份:
    2007
  • 资助金额:
    $ 4.48万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了