Better correlation of outcomes with MC dose calculation

结果与 MC 剂量计算具有更好的相关性

基本信息

  • 批准号:
    7630775
  • 负责人:
  • 金额:
    $ 22.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The clinical utility of the use of more accurate dose calculation algorithms for radiotherapy treatment planning has not yet been shown for many clinical sites. Although increasingly sophisticated and accurate dose calculation methods such as Monte Carlo and convolution/superposition have over the past decade become increasingly available for clinical study, direct study of the usefulness of the more accurate dose distributions obtained with these algorithms in terms of improving clinical patient outcomes has not been performed. In this study, we will use the clinical outcomes from two conformal therapy treatment studies (parotid-sparing in the head/neck and dose escalation for non-small cell lung cancer) to investigate whether dose distributions calculated with the more accurate Monte Carlo method will improve the correlation between the clinical patient outcomes and the calculated dose distributions. Since both clinical complications and local control for the two clinical studies are well-documented, and the full 3-D patient anatomy and treatment information is available for the patients on those protocols, these data provide a unique opportunity to evaluate the potential for clinical improvements due to improved dose calculations with a retrospective study. To accomplish the proposed goal, we must: (a) perform the necessary algorithmic verification against measurements made in phantoms that closely resemble the relevant clinical geometries, and (b) use the validated and accurate calculational method to re-evaluate the dose distributions delivered to patients treated on the conformal therapy trials performed in the head/neck and lung, and determine if the clinical outcomes (complications and local control) are better correlated with the more accurate calculational results than with the original results.
描述(由申请人提供):在许多临床场所尚未显示出使用更准确的剂量计算算法进行放射治疗治疗计划的临床效用。尽管蒙特卡洛和卷积/叠加等日益复杂和准确的剂量计算方法在过去十年中越来越多地用于临床研究,但尚未对通过这些算法获得的更准确的剂量分布在改善临床患者结果方面的有用性进行直接研究。在本研究中,我们将利用两项适形疗法治疗研究(头/颈部腮腺保留和非小细胞肺癌剂量递增)的临床结果来研究使用更准确的蒙特卡罗方法计算的剂量分布是否会改善临床患者结果和计算的剂量分布之间的相关性。由于这两项临床研究的临床并发症和局部控制都有详细记录,并且可以为这些方案中的患者提供完整的 3D 患者解剖结构和治疗信息,因此这些数据提供了一个独特的机会来评估由于回顾性研究改进的剂量计算而带来的临床改善的潜力。为了实现拟议的目标,我们必须:(a)对与相关临床几何形状非常相似的体模中进行的测量进行必要的算法验证,以及(b)使用经过验证的准确计算方法重新评估在头/颈和肺部进行的适形治疗试验中接受治疗的患者的剂量分布,并确定临床结果(并发症和局部控制)是否符合要求。 与原始结果相比,与更准确的计算结果的相关性更好。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation.
用于 IMRT 剂量计算的基于蒙特卡罗的 MLC 模拟模型的实验验证。
  • DOI:
    10.1118/1.2428405
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tyagi,Neelam;Moran,JeanM;Litzenberg,DaleW;Bielajew,AlexF;Fraass,BenedickA;Chetty,IndrinJ
  • 通讯作者:
    Chetty,IndrinJ
Experimental verification and clinical implementation of a commercial Monte Carlo electron beam dose calculation algorithm.
商业蒙特卡罗电子束剂量计算算法的实验验证和临床实施。
  • DOI:
    10.1118/1.2839098
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Fragoso,Margarida;Pillai,Sushakumari;Solberg,TimothyD;Chetty,IndrinJ
  • 通讯作者:
    Chetty,IndrinJ
How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?
  • DOI:
    10.1118/1.2400624
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Rosu, Mihaela;Balter, James M.;Ten Haken, Randall K.
  • 通讯作者:
    Ten Haken, Randall K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INDRIN Julian CHETTY其他文献

INDRIN Julian CHETTY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INDRIN Julian CHETTY', 18)}}的其他基金

Better correlation of outcomes with MC dose calculation
结果与 MC 剂量计算具有更好的相关性
  • 批准号:
    7010103
  • 财政年份:
    2005
  • 资助金额:
    $ 22.93万
  • 项目类别:
Better correlation of outcomes with MC dose calculation
结果与 MC 剂量计算具有更好的相关性
  • 批准号:
    7189828
  • 财政年份:
    2005
  • 资助金额:
    $ 22.93万
  • 项目类别:
Better correlation of outcomes with MC dose calculation
结果与 MC 剂量计算具有更好的相关性
  • 批准号:
    7244748
  • 财政年份:
    2005
  • 资助金额:
    $ 22.93万
  • 项目类别:
Better correlation of outcomes with MC dose calculation
结果与 MC 剂量计算具有更好的相关性
  • 批准号:
    6865114
  • 财政年份:
    2005
  • 资助金额:
    $ 22.93万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了