Machine Networks of Attention from Human Networks of Attention
机器注意力网络与人类注意力网络
基本信息
- 批准号:2889016
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The addition of 'attention' to machine learning has recently improved many algorithms with the potential to transform a wide range of machine learning approaches (transformers, perceivers). Attention, simply, allows an algorithm to allocate more weight to input that is relevant for certain tasks, and less weight to the irrelevant. We propose that attention mechanisms in machine learning will become increasingly important as the volume of input data increases, and even efficient algorithms will have to make informed choices about which input should receive priority or actively inhibited. We will apply current theories of human attention to improve machine learning algorithms that adjust to the goals of the agent. Biological attention has been studied for more than 100 years and comprises multiple overlapping networks that help an organism allocate neural processing to sensory input that is important to a given task. For example, the orienting network uses eye movements and shifts of spatial attention to inspect important areas of our environment. The executive control network adjusts sensory priority for our evolving goals. We will use high quality eye tracking data in various tasks as a proxy for human attention and use these data to inform novel attentional mechanisms for machine learning. The key objectives of the research will be to improve existing attention mechanisms in machine learning algorithms such that they are better able to prioritize input data for a given task. The resulting improved efficiency will reduce resources needed for existing tasks and and improve the scope of these algorithms for more computationally expensive tasks. By explicitly testing mechanisms that we know from human visual processing, we will gain a better understanding of how machine and human attention might work together in joint tasks.
对机器学习的关注最近改进了许多算法,有可能改变广泛的机器学习方法(转换器、感知器)。简单地说,注意力允许算法将更多的权重分配给与某些任务相关的输入,而将更少的权重分配给不相关的输入。我们认为,随着输入数据量的增加,机器学习中的注意机制将变得越来越重要,即使是高效的算法也必须做出明智的选择,决定哪些输入应该优先或主动禁止。我们将应用当前的人类注意力理论来改进机器学习算法,以适应代理的目标。生物注意力的研究已经有100多年的历史了,它由多个重叠的网络组成,这些网络帮助有机体将神经处理分配给对给定任务至关重要的感觉输入。例如,定位网络使用眼球运动和空间注意力的转移来检查我们环境的重要领域。执行控制网络根据我们不断进化的目标调整感觉优先级。我们将在各种任务中使用高质量的眼睛跟踪数据作为人类注意力的代理,并使用这些数据来为机器学习提供新的注意机制。这项研究的主要目标将是改进机器学习算法中现有的注意力机制,以便它们能够更好地为给定任务的输入数据排序优先级。由此提高的效率将减少现有任务所需的资源,并扩大这些算法用于计算成本更高的任务的范围。通过明确测试我们从人类视觉处理中了解到的机制,我们将更好地理解机器和人类的注意力如何在联合任务中协同工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
军民两用即兴网(Ad Hoc Networks)的研究
- 批准号:60372093
- 批准年份:2003
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
22 UKRI-SBE: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
22 UKRI-SBE:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
BB/X013103/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
2414066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Attention and Selection Mechanisms in Neural Networks and Computer Vision
神经网络和计算机视觉中的注意和选择机制
- 批准号:
RGPIN-2019-05777 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Attention Networks and Optimized Deep Learning Architectures for Cancer Diagnosis and Prognosis in Medical Imaging
用于医学影像中癌症诊断和预后的注意力网络和优化的深度学习架构
- 批准号:
RGPIN-2021-03417 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structured Attention in Neural Networks for Natural Language Processing
自然语言处理神经网络中的结构化注意力
- 批准号:
RGPIN-2018-06437 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
2219521 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Developing, Applying, and Explaining Graph Convolutional Neural Networks in the Context of Genome Wide Association Analyses to Increase Attention Deficit/Hyperactivity Disorder Prediction Accuracy, Extract Novel Genomic Networks Associated With Attention
在全基因组关联分析的背景下开发、应用和解释图卷积神经网络,以提高注意力缺陷/多动症预测准确性,提取与注意力相关的新型基因组网络
- 批准号:
457223 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship Programs
Attention Networks and Optimized Deep Learning Architectures for Cancer Diagnosis and Prognosis in Medical Imaging
用于医学影像中癌症诊断和预后的注意力网络和优化的深度学习架构
- 批准号:
RGPIN-2021-03417 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The Development of Inhibitory Networks Regulating Sustained Attention
调节持续注意力的抑制网络的发展
- 批准号:
10414269 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Attention and Selection Mechanisms in Neural Networks and Computer Vision
神经网络和计算机视觉中的注意和选择机制
- 批准号:
RGPIN-2019-05777 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual