Engineering nanosponges to sequester bacterial exotoxins for protection against severe infection
工程纳米海绵可隔离细菌外毒素以防止严重感染
基本信息
- 批准号:2889873
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacterial infections represent a significant challenge to clinicians and contribute substantially to healthcare costs worldwide. This challenge has been exacerbated by the rise in antimicrobial resistance which threatens to render current therapies obsolete. One such bacteria, Staphylococcus aureus, has been identified by the WHO as one of 10 priority pathogens which present the largest threat. Antibiotic resistant strains (such as MRSA) have been associated with approximately 1 million deaths and were responsible for nearly 100,000 deaths in 2019 alone. S. aureus infections can result in diverse symptoms ranging from more trivial superficial skin diseases to potentially fatal conditions such as bacteraemia, pneumonia and endocarditis. Importantly, S. aureus cells that invade host tissues use toxins secreted into the neighbouring environment that lead to cell damage and disease. The use of biomaterial-based technology to mimic host cells and thus to absorb these toxins offers a novel approach to tackling this issue. By generating nanoparticles that are coated with immune cell membranes, these biomaterial particles could act as sponges and alleviate the deleterious impact of these bacterial toxins. The main aims of the project are 1) to develop biomaterial-core nanoparticles and fuse with isolated white blood cell membranes to engineer nanosponges, 2) to evaluate nanosponge function against S. aureus toxins using a range of microbiological assays and techniques, and 3) to examine nanosponge efficacy against S. aureus infection using the Manduca sexta caterpillar as an in vivo model. Overall, the project aims to deliver a nanosponge-based approach to treating S. aureus infection from development stage through to in silica testing in cell-culture and in vivo evaluation in an invertebrate model. The chief objective is provide proof of concept for future research.There is a plethora of potential applications of nanosponges, both within and outside the microbial arena. Chiefly, the ability for nanosponges to alleviate host infection and allow for an increased host immune response might lessen the need for clinicians to provide antibiotic treatments. In the case of the MRSA, the clinical use of nanosponge technology could - alongside conventional antimicrobial therapies - greatly aid in patient survival. Furthermore, for milder cases the use of nanosponges alone might be enough to halt the infection, thus negating any use of antibiotics at all. By reducing reliance on antibiotics more widely, clinical use of nanosponge technology could also reduce the risk of future resistant bacterial strains. Wider applications of nanosponge technology might involve their use as part of anti-cancer treatments. Biomaterial nanoparticles can be loaded with chemotherapy drugs and their cell membrane coating used to target particular cancer cells. They also offer potential as novel nanovaccines, the cell membrane potentially being able to present multiple antigens simultaneously to promote a host immune response.The project described above has the utmost relevance to the EPSRC as it meets several EPSRC strategic priorities such as 'frontiers in engineering and technology' and 'transforming health and healthcare', as well as fitting with MRC and wider UKRI priorities involving 'infectious human diseases' and 'the fight against infections and antimicrobial resistance'.
细菌感染对临床医生来说是一个重大挑战,并大大增加了全球的医疗保健成本。这一挑战因抗菌素耐药性的增加而加剧,这可能使目前的治疗方法过时。其中一种细菌金黄色葡萄球菌已被世界卫生组织确定为构成最大威胁的十大优先病原体之一。抗生素耐药菌株(如MRSA)与约100万例死亡有关,仅在2019年就造成近10万例死亡。S.金黄色葡萄球菌感染可导致多种症状,从较轻微的浅表皮肤病到潜在的致命病症,例如菌血症、肺炎和心内膜炎。重要的是,S。侵入宿主组织的金黄色葡萄球菌细胞利用分泌到邻近环境中的毒素导致细胞损伤和疾病。使用基于生物材料的技术来模拟宿主细胞,从而吸收这些毒素,为解决这一问题提供了一种新的方法。通过产生涂有免疫细胞膜的纳米颗粒,这些生物材料颗粒可以充当海绵,减轻这些细菌毒素的有害影响。该项目的主要目标是1)开发生物材料核心纳米颗粒,并与分离的白色血细胞膜融合以设计纳米海绵,2)评估纳米海绵对S.使用一系列微生物学测定和技术检测金黄色葡萄球菌毒素,以及3)检测纳米海绵对金黄色葡萄球菌的功效。金黄色葡萄球菌感染,使用天蛾毛虫作为体内模型。总的来说,该项目旨在提供一种基于纳米海绵的方法来治疗S。金黄色葡萄球菌感染从发育阶段到细胞培养中的二氧化硅测试和无脊椎动物模型中的体内评价。主要目标是为未来的研究提供概念验证。纳米海绵在微生物竞技场内外都有大量的潜在应用。然而,纳米海绵减轻宿主感染并增加宿主免疫反应的能力可能会减少临床医生提供抗生素治疗的需要。在MRSA的情况下,纳米海绵技术的临床使用可以与传统的抗菌治疗一起极大地帮助患者生存。此外,对于较轻的病例,单独使用纳米海绵可能足以阻止感染,从而完全否定任何抗生素的使用。通过更广泛地减少对抗生素的依赖,纳米海绵技术的临床应用也可以降低未来耐药菌株的风险。纳米海绵技术的更广泛应用可能涉及将其用作抗癌治疗的一部分。生物材料纳米颗粒可以装载化疗药物,其细胞膜涂层用于靶向特定的癌细胞。它们还提供了作为新型纳米疫苗的潜力,细胞膜可能能够同时呈递多种抗原以促进宿主免疫应答。上述项目与EPSRC具有最大的相关性,因为它符合EPSRC的几个战略优先事项,如“工程和技术前沿”和“改变健康和医疗保健”,以及与MRC和更广泛的UKRI优先事项相适应,涉及“传染性人类疾病”和“对抗感染和抗菌素耐药性”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
- 批准号:
10674406 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Biomimetic Nanosponges to 'Lure and Kill' Phospholipase A2
仿生纳米海绵“引诱并杀死”磷脂酶 A2
- 批准号:
1904702 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
NarcoBond: Opioid Targeted Biomimetic Nanosponges for Treatment of Opioid Overdose
NarcoBond:阿片类药物靶向仿生纳米海绵用于治疗阿片类药物过量
- 批准号:
9912595 - 财政年份:2019
- 资助金额:
-- - 项目类别:
NarcoBond: Opioid Targeted Biomimetic Nanosponges for Treatment of Opioid Overdose
NarcoBond:阿片类药物靶向仿生纳米海绵用于治疗阿片类药物过量
- 批准号:
10179237 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Crosslinked Nanosponges for the Topical Treatment of Wound Biofilms
用于局部治疗伤口生物膜的交联纳米海绵
- 批准号:
10189492 - 财政年份:2018
- 资助金额:
-- - 项目类别:
SBIR Phase I: Development of Biomimetic Toxin Nanosponges with Enhanced Toxin Affinity
SBIR 第一阶段:开发具有增强毒素亲和力的仿生毒素纳米海绵
- 批准号:
1345715 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Protein/Peptide Separation with Polymer Brush Nanosponges
使用聚合物刷纳米海绵分离蛋白质/肽
- 批准号:
7366938 - 财政年份:2008
- 资助金额:
-- - 项目类别: