Decarbonising Construction: Understanding the Chemistry and Engineering of Low-Carbon Alkali-Activated Cements

脱碳建设:了解低碳碱激活水泥的化学与工程

基本信息

  • 批准号:
    2900542
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Decarbonising industry and the economy is essential to improve the balance between our ecological footprint and the planet's renewable resources. This would provide the best possible chance for humanity to mitigate the effects of climate change. Consequently, we need to rethink the way we build our cities. And to do this, we need to talk about cement. Cement, the 'glue' in concrete, is the durable, waterproof and ubiquitous material upon which modern civilisation is built. Concrete is second only to water in terms of commodity use, and the world produces more than 10 billion tonnes of it each year. Cement production alone (excluding other aspects of construction) accounts for around 8% of global CO2 emissions, about half of which results from chemical reactions inherent in the production process. As other industries such as energy and agriculture reduce their share of emissions, cement production may account for nearly a quarter of all human-driven CO2 emissions by 2050. Modern alkali-activated cements (AAC) can enhance physical properties, and reduce associated CO2 emissions by >80%, compared to Portland cement. Additionally, these cements are produced primarily from supplementary cementitious materials (SCM) which are typically industrial by-products such as metallurgical slags, or naturally abundant minerals such as clays, further enhancing their sustainability. These cements require an alkali 'activator' to provide a high pH in the fresh cement paste and drive reaction, setting and hardening. However, concentrated alkali solutions exhibit high viscosities and complex crystallisation behaviour, which dramatically affects the reaction mechanisms and kinetics, and physical properties of the resultant cements, even with only minor changes in mix formulation. A detailed understanding of crystallisation processes, fluid-particle and particle-particle interactions is urgently required for these next-generation low-carbon cements, to enable quality control and make them practical for use in large-scale construction. This PhD uses in-situ surface-specific techniques, spectroscopic and microstructural characterisation to examine these interactions in AAC produced using a suite of alkali solutions and SCMs. Currently underutilised SCMs (e.g. basic oxygen furnace, legacy slags) are investigated, and benchmarked against AAC produced using blast furnace slag (industry standard). The knowledge obtained will be used to design novel AAC formulations with enhanced performance. This will drive implementation, and help decarbonise cement production. We will examine how crystallisation processes, fluid-particle and particle-particle interactions affect (i) dispersion, fluidisation, and rheology of the fresh cement paste, (ii) reaction and setting, and (iii) physical property development of low-carbon AAC. We will use this information to design and test new AAC formulations for enhanced performance and quality control. Specifically, it will develop a mechanistic understanding of crystallisation processes, fluid-particle and particle-particle interactions, by experimentally assessing: Surface chemistry of the activating solution and fresh cement paste. Reaction and setting, and fresh-state physical characteristics of the cements. Evolution of cement structure, phase assemblage and durability. This will show how the nature of the raw materials affect: 1) dispersion, fluidisation, and rheology, 2) reaction and setting, and 3) physical property development. This will enable optimisation of cement formulations for enhanced sustainability, performance and durability, and hence drive industrial innovation.
工业和经济的脱碳对于改善生态足迹和地球可再生资源之间的平衡至关重要。这将为人类减轻气候变化的影响提供最好的机会。因此,我们需要重新思考我们建设城市的方式。要做到这一点,我们需要谈谈水泥。水泥,混凝土中的“胶水”,是一种耐用、防水、无处不在的材料,是现代文明的基础。混凝土是仅次于水的第二大商品,全世界每年生产超过100亿吨混凝土。仅水泥生产(不包括建筑的其他方面)就占全球二氧化碳排放量的8%左右,其中约一半来自生产过程中固有的化学反应。随着能源和农业等其他行业的排放量减少,到2050年,水泥生产可能占所有人为二氧化碳排放量的近四分之一。与波特兰水泥相比,现代碱活化水泥(AAC)可以增强物理性能,并减少80%的相关二氧化碳排放。此外,这些水泥主要由辅助胶凝材料(SCM)生产,这些材料通常是工业副产品,如冶金渣,或天然丰富的矿物质,如粘土,进一步提高了它们的可持续性。这些水泥需要一种碱“活化剂”,以在新鲜的水泥浆中提供高pH值,并促进反应、凝结和硬化。然而,浓碱溶液表现出高粘度和复杂的结晶行为,这极大地影响了反应机制和动力学,以及所得水泥的物理性质,即使混合物配方只有微小的变化。这些下一代低碳水泥迫切需要详细了解结晶过程,流体-颗粒和颗粒-颗粒相互作用,以实现质量控制并使其在大规模施工中实际使用。本博士使用原位表面特异性技术,光谱和微观结构表征来检查使用一套碱溶液和scm产生的AAC中的这些相互作用。目前未充分利用的SCMs(例如,碱性氧炉,遗留渣)进行了调查,并对使用高炉渣(工业标准)生产的AAC进行了基准测试。所获得的知识将用于设计具有增强性能的新型AAC配方。这将推动实施,并有助于使水泥生产脱碳。我们将研究结晶过程、流体-颗粒和颗粒-颗粒相互作用如何影响(i)新水泥体的分散、流化和流变性,(ii)反应和凝固,以及(iii)低碳AAC的物理性质发展。我们将利用这些信息来设计和测试新的AAC配方,以提高性能和质量控制。具体来说,它将通过实验评估:活化溶液和新鲜水泥浆的表面化学性质,对结晶过程、流体-颗粒和颗粒-颗粒相互作用进行机理理解。胶结物的反应、凝结和新鲜状态的物理特性。水泥结构演化、相组合与耐久性。这将显示原料的性质如何影响:1)分散、流化和流变性,2)反应和凝固,以及3)物理性质的发展。这将优化水泥配方,提高可持续性、性能和耐久性,从而推动工业创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Construction of a new view of the Earth that integrates the environment, life and resources based on the understanding of the phenomenon of asteroid impacts in oceans
基于对小行星撞击海洋现象的认识,构建环境、生命、资源融为一体的新地球观
  • 批准号:
    23H05453
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Processes and Timescales of Basalt Petrogenesis and Oceanic Crustal Construction at Slow-Spreading Mid-Ocean Ridges
合作研究:了解缓慢扩张的大洋中脊玄武岩成岩和洋壳构造的过程和时间尺度
  • 批准号:
    2317704
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Construction and application of a system for understanding the emotional state of severely mentally retarded persons
重度弱智者情绪状态了解系统的构建与应用
  • 批准号:
    23K02620
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Understanding the Processes and Timescales of Basalt Petrogenesis and Oceanic Crustal Construction at Slow-Spreading Mid-Ocean Ridges
合作研究:了解缓慢扩张的大洋中脊玄武岩成岩和洋壳构造的过程和时间尺度
  • 批准号:
    2317705
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Toward an understanding of why retrieval practice supports the construction of integrated memory representations
理解为什么检索实践支持整合记忆表征的构建
  • 批准号:
    RGPIN-2020-04618
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2221166
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2221167
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Toward an understanding of why retrieval practice supports the construction of integrated memory representations
理解为什么检索实践支持整合记忆表征的构建
  • 批准号:
    RGPIN-2020-04618
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and reducing urban construction material use
了解并减少城市建筑材料的使用
  • 批准号:
    561871-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了