Topological Design of Novel Foldamer-Polymer Scaffolds for Applications in Drug Delivery and to Probe New Agents with Biological Activity

新型折叠聚合物支架的拓扑设计,用于药物输送和探索具有生物活性的新药物

基本信息

  • 批准号:
    2902781
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

: This project will design and produce new molecules that self-assemble to create novel hybrid foldamer-polymers scaffolds capable of a diverse range of topologies. These new higher order hybrid structures will possess tuneable physical and biological properties and find wide-reaching applications as potential drug delivery vehicles, wound healing biomaterials and/or as new agents with biological activity (e.g., anti-cancer or anti-microbial) for the potential treatment of diseases.Background: Foldamers are synthetic helical oligomers that adopt stable secondary structures through mimicking the folding patterns of biological systems to generate biomimetic structures of well-defined size and shape.1 In recent years, the biological activity of a diverse array of foldamers as potential antimicrobial and antibacterial agents has excited much interest.1b However, despite the potent antimicrobial properties of foldamers, which make them excellent candidates for topical wound healing treatment, their potential application as wound healing biomaterials has not yet been explored. Moreover, 3D scaffolds obtained from the supramolecular assembly of foldamers often lack the mechanical properties required for their optimal performance as biomedical devices.Polymers have recently emerged as a promising class of materials for biomedical applications, due to their ease of synthesis and tunable mechanical properties. These attractive features have encouraged their widespread use in a range of applications, including drug delivery, tissue regeneration, and initial studies into their wound healing properties have been reported.2 However, the effective use of polymeric materials for wound healing applications is severely limited by their inefficacy to induce a biological response, which in turn leads to a failure in promoting in situ tissue healing and growth.In this project, we will address the current limitations associated with the use of individual foldamers and polymers scaffolds as topical wound healing treatments by creating a new class of biomimetic hybrid foldamer-polymer materials which combine and optimize the desirable features of both individual scaffolds. These hybrid scaffolds will form controlled double-network hydrogels in which the mechanical and biocompatibility properties of the scaffold can be orthogonally tuned through modification of either the polymer or foldamer components. Furthermore, the presence of the biomimetic foldamer component allows the scaffold to not only function as a topical wound care device but also to exhibit antimicrobial activity, which has long term implications for increased patient recovery. During the course of the project, a diverse range of libraries of foldamer-polymer scaffolds will be created in order to permit optimization of the biological performance of these hybrid biomaterials as a new generation of topical wound healing devices with in-built antimicrobial activity and also as potential drug delivery vehicles. The cytocompatibility and the tissue healing and growth properties of these biomaterials will be assessed in 2D and 3D in vitro cell culture.References: 1. a) S. J. Pike et al., Chem. Eur. J., 2014, 20, 15981; b) C. Adam, Chem. Eur. J., 2018, 24, 2249.2. M. Mir, Progress in Biomaterials, 2018, 7, 1.
该项目将设计和生产新的分子,自组装,创造新的混合折叠聚合物支架能够多样化的拓扑结构。这些新的高阶杂化结构将具有可调的物理和生物学性质,并作为潜在的药物递送载体、伤口愈合生物材料和/或作为具有生物活性的新试剂(例如,抗癌或抗微生物)用于潜在的疾病治疗。背景:折叠体是合成的螺旋低聚物,其通过模仿生物系统的折叠模式来采用稳定的二级结构,以产生具有明确定义的大小和形状的仿生结构。1近年来,各种各样的折叠体作为潜在的抗微生物剂和抗菌剂的生物活性引起了人们的极大兴趣。1b然而,尽管折叠体具有有效的抗微生物特性,这使得它们成为局部伤口愈合治疗的优异候选物,但它们作为伤口愈合生物材料的潜在应用尚未被探索。此外,由折叠体的超分子组装获得的3D支架通常缺乏作为生物医学设备的最佳性能所需的机械性能。聚合物由于其易于合成和可调的机械性能,最近成为一类有前途的生物医学应用材料。这些有吸引力的特征鼓励了它们在一系列应用中的广泛使用,包括药物递送、组织再生,并且对它们的伤口愈合性质的初步研究已经被证实。2然而,聚合物材料用于伤口愈合应用的有效使用受到它们诱导生物反应的无效性的严重限制,这又导致促进原位组织愈合和生长的失败。在该项目中,我们将通过创建一类新的仿生混合折叠体-聚合物材料,其联合收割机组合并优化两种单独支架的期望特征。这些混合支架将形成受控的双网络水凝胶,其中支架的机械和生物相容性可以通过聚合物或折叠体组分的改性进行正交调节。此外,仿生折叠体组分的存在允许支架不仅用作局部伤口护理装置,而且还表现出抗微生物活性,这对增加患者恢复具有长期意义。在该项目的过程中,将创建各种各样的折叠体-聚合物支架库,以优化这些混合生物材料的生物性能,作为具有内置抗菌活性的新一代局部伤口愈合器械,也作为潜在的药物递送载体。这些生物材料的细胞相容性和组织愈合和生长特性将在2D和3D体外细胞培养中进行评估。a)S. J. Pike等人,欧洲化学J.,2014,20,15981; B)C. Adam,Chem. Eur. J.,2018年,24,2249.2。M. Mir,生物材料进展,2018,7,1。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

低空飞行器及其空域的设计与监管平台软件
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向电子自旋调控的不对称纳米电催化剂的设计与合成
  • 批准号:
    JCZRYB202500489
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于PROTAC技术靶向EFTUD2小分子降解剂设计和结构优化与抗肺癌活性研究
  • 批准号:
    JCZRYB202501469
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
  • 批准号:
    JCZRLH202500512
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
氢电转换过程关键材料设计和衰减机理研究
  • 批准号:
    JCZRLH202500869
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于机器学习的高性能含能材料设计研究
  • 批准号:
    JCZRLH202500926
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
石墨烯吸波超表面设计与性能调控研究
  • 批准号:
    JCZRLH202501080
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
酿酒酵母全细胞催化底物磷酸化机制解析及高效催化体系建立
  • 批准号:
    JCZRLH202501106
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
预应力CFRP网格增强UHPC薄板受力性能及设计方法研究
  • 批准号:
    JCZRYB202500300
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多孔硅负极氮化硅镁功能界面设计及增强储锂机制
  • 批准号:
    JCZRQN202500073
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Design and application of novel stimuli-responsive supramolecules to selectively separate cesium and strontium from radioactive wastewater
新型刺激响应超分子的设计与应用从放射性废水中选择性分离铯和锶
  • 批准号:
    24K15337
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of graphene for tailored functionalities: a novel mathematical approach
定制功能的石墨烯设计:一种新颖的数学方法
  • 批准号:
    24K06797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of novel polymer electrolytes for solid state sodium batteries.
固态钠电池新型聚合物电解质的设计。
  • 批准号:
    DP240101661
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Genome targeting by highly accurate design of Zinc Fingers to enable novel therapeutics and research tools
通过高度精确的锌指设计进行基因组靶向,以实现新型疗法和研究工具
  • 批准号:
    479699
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
A Novel Lightweight Design and Manufacturing for Aircraft Wing Structure
一种新型飞机机翼结构轻量化设计与制造
  • 批准号:
    22KJ0676
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A UK platform for the control of Bovine Viral Diarrhoea:Application of a novel disease simulation model to guide programme development & policy design
英国牛病毒性腹泻控制平台:应用新型疾病模拟模型指导项目开发
  • 批准号:
    BB/X017362/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A novel diagnostic tool leveraging AI for protein design and microfluidics for better cell therapy management
一种利用人工智能进行蛋白质设计和微流体技术以实现更好的细胞治疗管理的新型诊断工具
  • 批准号:
    10082156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了