Advanced Microsystems for Neural Information Processing
用于神经信息处理的先进微系统
基本信息
- 批准号:7230259
- 负责人:
- 金额:$ 18.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-27 至 2009-02-28
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsArchivesBehavioralBrain regionCellsCephalicCharacteristicsChronicCommunicationCompanionsComputersConditionConsumptionCustomCutaneousDataDevicesDisciplineElectronicsEngineeringFutureGenerationsGoalsHeatingImplantInvestigationLinkMicroelectrodesMicrofabricationNervous system structureNeurobiologyNeuronsOperative Surgical ProceduresPerformancePhasePhysiologicalPlacementPopulationProcessPurposeResearchResourcesRoleSchemeSignal TransductionSimulateSiteStagingStreamStructureSystemTechniquesTechnologyTelemetryTestingTimeTrainingbrain machine interfacecomputerized data processingcostdensitydesignextracellularimplantationin vivointerestmicrosystemsneural information processingneurophysiologypreconditioningrelating to nervous systemresearch studysizesuccesstransmission process
项目摘要
DESCRIPTION (provided by applicant): The development of advanced neuroprosthetic systems and brain-machine interfaces for high-capacity, real-time, 2-way communication with the nervous system is a major challenge to the emerging neural engineering discipline. Recent advances in the fabrication of high-density microelectrode arrays for recording and stimulation of multiple neuronal cell populations have triggered numerous neurophysiological discoveries. Nevertheless, the success of these devices is mitigated in part by their current communication and signal processing capabilities. Data transmission in real-time from a high-density neural implant would require an ultra-high bandwidth telemetry link. Pre-processing neural signals is accordingly sought to be implemented as close as possible to where the signal is acquired to infer the "useful" information early in the data stream and to reduce the computational and communication costs. The proposed project is aimed at developing a highly scalable modular microsystem capable of processing neural signals in real-time and achieving large compression ratios while maintaining highest signal fidelity. The project has 3 aims. The first aim is to design adequate array signal processing algorithms to infer the useful information in the neural signals prior to extra-cutaneous transmission. Once optimized, the second aim is to embed these algorithms onto a custom designed hardware platform for the purpose of preconditioning the neural signals. The module will be designed for intra-cranial implantation, thus will be optimized for minimum power dissipation and form factor. This module will serve as the front-end stage of a distributed microsystem aimed at interfacing multiple neuronal populations in cortical structures of interest. Adaptation of the algorithms will be assessed in aim 3 with rigorous testing using conditioned offline recordings to mimic adverse conditions in long term chronic experiments.
描述(由申请人提供):开发先进的神经假体系统和脑机接口,以实现与神经系统的高容量、实时、双向通信,是新兴神经工程学科面临的主要挑战。最近的进展,在制造高密度微电极阵列的记录和刺激多个神经元细胞群引发了许多神经生理学的发现。然而,这些设备的成功部分地被它们当前的通信和信号处理能力所减缓。从高密度神经植入物实时传输数据需要超高带宽的遥测链路。因此,预处理神经信号寻求尽可能接近于获取信号的位置来实现,以在数据流中早期推断“有用”信息并降低计算和通信成本。该项目旨在开发一个高度可扩展的模块化微系统,能够实时处理神经信号,并在保持最高信号保真度的同时实现大压缩比。该项目有三个目标。第一个目标是设计适当的阵列信号处理算法,以推断神经信号中的有用信息之前,皮肤外传输。一旦优化,第二个目标是将这些算法嵌入到定制设计的硬件平台上,以预处理神经信号。该模块将被设计用于颅内植入,因此将针对最小功耗和形状因子进行优化。该模块将作为分布式微系统的前端阶段,旨在将感兴趣的皮层结构中的多个神经元群体连接起来。将在目标3中评估算法的适应性,使用条件离线记录进行严格测试,以模拟长期慢性实验中的不利条件。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A MIMO channel approach for characterizing electrode-tissue interface in long-term chronic microelectrode array recordings.
一种 MIMO 通道方法,用于表征长期慢性微电极阵列记录中的电极组织界面。
- DOI:10.1109/iembs.2006.260055
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Oweiss,KarimG
- 通讯作者:Oweiss,KarimG
Hardware considerations of a spatial filter for decorrelating high-density multielectrode neural recordings.
用于解相关高密度多电极神经记录的空间滤波器的硬件注意事项。
- DOI:10.1109/iembs.2006.259867
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Thomson,KyleE;Oweiss,KarimG
- 通讯作者:Oweiss,KarimG
Impact of lossy compression on neural response characteristics extracted from high-density intra-cortical implant data.
有损压缩对从高密度皮质内植入数据提取的神经响应特征的影响。
- DOI:10.1109/iembs.2007.4353552
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Shetliffe,MichaelA;Kamboh,AwaisM;Mason,Andrew;Oweiss,KarimG
- 通讯作者:Oweiss,KarimG
Sorting and tracking neuronal spikes via simple thresholding.
通过简单的阈值处理对神经元尖峰进行排序和跟踪。
- DOI:10.1109/tnsre.2013.2289918
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Aghagolzadeh,Mehdi;Mohebi,Ali;Oweiss,KarimG
- 通讯作者:Oweiss,KarimG
Compressed and distributed sensing of neuronal activity for real time spike train decoding.
- DOI:10.1109/tnsre.2009.2012711
- 发表时间:2009-04
- 期刊:
- 影响因子:0
- 作者:Aghagolzadeh M;Oweiss K
- 通讯作者:Oweiss K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karim G Oweiss其他文献
Feedback control of the spatiotemporal firing pattern of a basal ganglia microcircuit model
- DOI:
10.1186/1471-2202-11-s1-o16 - 发表时间:
2010-07-20 - 期刊:
- 影响因子:2.300
- 作者:
Jianbo Liu;Karim G Oweiss;Hassan K Khalil - 通讯作者:
Hassan K Khalil
Karim G Oweiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karim G Oweiss', 18)}}的其他基金
Optimizing microstimulation to restore lost somatosensation
优化微刺激以恢复失去的体感
- 批准号:
9100946 - 财政年份:2015
- 资助金额:
$ 18.89万 - 项目类别:
Optimizing microstimulation to restore lost somatosensation
优化微刺激以恢复失去的体感
- 批准号:
8988244 - 财政年份:2015
- 资助金额:
$ 18.89万 - 项目类别:
A Wireless Multiscale Distributed Interface to the Cortex
与皮质的无线多尺度分布式接口
- 批准号:
8110556 - 财政年份:2008
- 资助金额:
$ 18.89万 - 项目类别:
A Wireless Multiscale Distributed Interface to the Cortex
与皮质的无线多尺度分布式接口
- 批准号:
7533930 - 财政年份:2008
- 资助金额:
$ 18.89万 - 项目类别:
A Wireless Multiscale Distributed Interface to the Cortex
与皮质的无线多尺度分布式接口
- 批准号:
7670296 - 财政年份:2008
- 资助金额:
$ 18.89万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant