Active acoustic noise cancellation for MRI
用于 MRI 的主动声学噪声消除
基本信息
- 批准号:7232445
- 负责人:
- 金额:$ 18.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-05 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAnxietyBehaviorBeliefCharacteristicsClinicalCommunicationDepthDevicesDiagnosisEarEcho-Planar ImagingEnvironmentEquipmentFosteringFunctional Magnetic Resonance ImagingFutureGoalsHealth PersonnelHealth ProfessionalImageImaging TechniquesMagnetic Resonance ImagingMedicalMedical ImagingMethodsModificationNatureNoiseOperative Surgical ProceduresOral cavityOutcomePatientsPersonal SatisfactionPhysiciansPhysiologic pulseProcessProtocols documentationPulse takingRangeResearchResearch PersonnelResearch Project GrantsScanningSeedsSignal TransductionSolutionsSourceStructureSystemTechniquesTechnologyTestingTimeWorkWorkplacecommercializationconceptcostdesigndesign and constructionhearing impairmentimage processingimprovedmagnetic fieldpressureprogramsprototypereconstructionresponsesoundtransmission processvibration
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this work is to develop a feasible acoustic noise control (ANC) system specifically tailored for MRI environment. The specific objective of this proposal is to design, construct and implement a working active noise reduction prototype that can substantially reduce the sound pressure levels inside the MRI bore. This requires an in-depth understanding of the true characteristics of MRI sound fields. The central hypothesis of this study is that the intense sound energy produced by the operation of MRI is strongly correlated with gradient pulses; and thus it can be controlled by an active ANC system that does not impede the primary imaging operation. It is our belief that the tonal behavior of the MRI sound spectrum revealed from our preliminary studies is well suitable for active noise cancellation techniques that normally work well for predictable harmonic signals. The rationale is that the ability of suppression acoustical noise in MRI is expected to seed new control algorithms that can be evaluated for prototyping. Active noise control is conceptually appealing because it avoids major reconstruction of the core MRI system. Furthermore, the successful implementation of this control system will remove, or at least diminish, acoustic noise as one of the barriers at very high field strength applications (> 7 Tesla), and hence allow for even higher fields to be employed for medical imaging and research in the future. In this proposed studies, the following specific aims will be pursued: 1) Identify and characterize the nature of controllable MRI noise - to investigate the radiated sound pressure characteristics, clarify their functional relationships with the gradient pulses of various imaging sequences, and identify significant features that can be controlled. 2) Determine feasible sensing and actuation concepts - to develop feasible sensing and actuation approaches that will be effective in suppressing the dominant acoustic noise signatures inside the MRI scanner bore. 3) Develop an ANC system - to design and implement a prototype for active ANC in the vicinity of the patient's ear and mouth.
描述(由申请人提供):这项工作的长期目标是开发一种专门针对MRI环境的可行的声学噪声控制(ANC)系统。本提案的具体目标是设计、构建和实施一个有效的主动降噪原型,该原型可以大幅降低MRI孔内的声压级。这需要深入了解MRI声场的真实特性。本研究的中心假设是,MRI操作产生的强声能与梯度脉冲密切相关;因此,它可以由不妨碍主要成像操作的有源ANC系统控制。我们相信,从我们的初步研究中揭示的MRI声谱的音调行为非常适合于通常对于可预测的谐波信号工作良好的有源噪声消除技术。其基本原理是,抑制MRI中的声学噪声的能力有望为原型设计提供新的控制算法。主动噪声控制在概念上是有吸引力的,因为它避免了核心MRI系统的重大重建。此外,该控制系统的成功实施将消除或至少减少作为非常高场强应用(> 7特斯拉)的障碍之一的声学噪声,并因此允许将来将更高的场用于医学成像和研究。在本拟议研究中,将追求以下具体目标:1)识别和表征可控MRI噪声的性质-研究辐射声压特性,阐明其与各种成像序列梯度脉冲的功能关系,并识别可控制的重要特征。2)确定可行的传感和驱动概念-开发可行的传感和驱动方法,有效抑制MRI扫描仪孔内的主要声学噪声特征。3)开发ANC系统-在患者的耳朵和嘴附近设计并实现有源ANC的原型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing-Huei Lee其他文献
Jing-Huei Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing-Huei Lee', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant