Exploiting Nanoparticles for Thermal and Light Driven Valorisation of Carbon Dioxide
利用纳米颗粒进行热和光驱动的二氧化碳增值
基本信息
- 批准号:2908099
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rapid rise in the concentration of atmospheric CO2 over the past century has increased demand for alternative fuel sources to address climate change. Even a climate progressive nation such as the UK is currently failing to meet CO2 emission targets set by the Paris Agreement,1 hence there is significant pressure for the development of innovative technologies to overcome this global challenge. The UK government's target to reach net-zero emissions by 2050 is to be partly facilitated by carbon sequestration. The UK's largest carbon capture plant, due to be operational by 2021, hopes to capture 40,000 tonnes of CO2 per annum - equivalent to the emissions of 22,000 cars.Both commercial and industrial applications of carbon dioxide are relatively limited, therefore these soon to be vast stores of captured CO2 present an exciting opportunity for an alternative fuel source. This project aims to develop metal nanoparticle catalysts that will facilitate both the thermal and photocatalytic reduction of CO2 to more valuable products such as formic acid which can serve as a hydrogen storage material, methanol which can act as a combustion fuel or as a C1-feedstock for the production of various fine chemicals, methane or even higher alkanes.The principal focus of this work will be to employ functionalized polymer immobilized ionic liquids (PIIL) as supports to stabilize gold nanoparticles, control their growth (size distribution and shape), modify surface electronic properties and explore whether catalyst-support interactions can be used to control efficacy. PIIL supports are advantageous over bespoke ligands as they are more affordable, robust, and are not prone to leaching enabling the catalyst to be recovered and recycled. The Doherty group has previously found that PIIL supports are highly beneficial in promoting the activity, stability, and selectivity of gold nanoparticle catalysts towards the reduction of small molecules.2 Reports have shown that polymeric ionic liquids also have a high CO2 absorption capacity in addition to fast rates of CO2 adsorption/desorption,3 therefore we intend to extend this technology towards the thermal and light driven reduction of CO2. Advanced analytical techniques such as TEM, XPS, EDX, powder-XRD, TGA and solid-state NMR spectroscopy will be utilized to determine the catalyst composition while DRIFT, XPS and in situ FTIR will be used to probe the catalyst surface and to study CO2 adsorption. A detailed understanding of surface-support interactions will provide insight on the factors that influence catalyst activity and product distribution, facilitating the development of an optimum catalyst with a stable activity profile suitable for scale-up.Relevant EPSRC research areas: Catalysis, Materials for Energy Applications, Carbon Capture and Storage, Renewable Energy1. Anderson, K.; Broderick, J. F.; Stoddard, I., A Factor of Two: How the Mitigation Plans of 'Climate Progressive' Nations Fall Far Short of Paris-Compliant Pathways. Clim. Policy 2020, 1-15.2. Doherty, S.; Knight, J. G.; et al., Highly Selective and Solvent-Dependent Reduction of Nitrobenzene to N-Phenylhydroxylamine, Azoxybenzene, and Aniline Catalyzed by Phosphino-Modified Polymer Immobilized Ionic Liquid-Stabilized AuNPs. ACS Catal. 2019, 9 (6), 4777-4791.3. Zulfiqar, S.; Sarwar, M. I.; Mecerreyes, D. Polymeric Ionic Liquids for CO2 Capture and Separation: Potential, Progress and Challenges. Polym. Chem. 2015, 6 (36), 6435-6451.
在过去的世纪中,大气CO2浓度的快速上升增加了对替代燃料来源的需求,以应对气候变化。即使像英国这样的气候进步国家目前也未能实现《巴黎协定》1设定的二氧化碳排放目标,因此开发创新技术以克服这一全球挑战面临着巨大的压力。英国政府到2050年实现净零排放的目标将在一定程度上通过碳封存来实现。英国最大的碳捕集工厂将于2021年投入运营,预计每年捕集40,000吨二氧化碳--相当于22,000辆汽车的排放量。二氧化碳的商业和工业应用都相对有限,因此这些即将大量储存的二氧化碳为替代燃料来源提供了令人兴奋的机会。该项目旨在开发金属纳米颗粒催化剂,这些催化剂将促进CO2的热和光催化还原为更有价值的产品,例如可用作储氢材料的甲酸,可用作燃烧燃料或作为生产各种精细化学品的C1原料的甲醇,本工作的主要焦点将是采用官能化聚合物固定化离子液体(PIIL)作为载体来稳定金纳米颗粒,控制它们的生长(尺寸分布和形状),改变表面电子性质,并探索催化剂-载体相互作用是否可用于控制功效。PIIL载体优于定制配体,因为它们更经济实惠、坚固并且不易于浸出,使得催化剂能够回收和再循环。Doherty小组先前已经发现PIIL载体在促进金纳米颗粒催化剂对小分子还原的活性、稳定性和选择性方面是非常有益的。2报告已经表明,除了快速的CO2吸附/解吸速率之外,聚合物离子液体还具有高的CO2吸收能力,因此,我们打算将这项技术扩展到热和光驱动的二氧化碳减排。先进的分析技术,如TEM,XPS,EDX,粉末XRD,TGA和固态NMR光谱将用于确定催化剂的组成,而DRIFT,XPS和原位FTIR将用于探测催化剂表面和研究CO2吸附。对表面-载体相互作用的详细了解将有助于深入了解影响催化剂活性和产物分布的因素,促进具有稳定活性特征的最佳催化剂的开发,适用于规模化生产。相关EPSRC研究领域:催化,能源应用材料,碳捕获和储存,可再生能源1。安德森; Broderick,J. F.;斯托达德岛,两个因素:“气候进步”国家的减缓计划如何远远低于巴黎标准路径。爬上去政策2020,1-15.2。Doherty,S.; Knight,J. G.;例如,高选择性和溶剂依赖性还原硝基苯N-苯基羟胺,氧化偶氮苯,苯胺催化膦改性聚合物固定化离子液体稳定的金纳米粒子。ACS Catal. 2019,9(6),4777-4791.3。Zulfiqar,S.;萨尔瓦尔,M.一、Mecerreyes,D.高分子离子液体用于CO2捕集和分离:潜力、进展和挑战。Polym. 2015,6(36),6435-6451中所述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Observation of reduction bonding phenomena of transparent nanoparticles with transient thermal rectification and its application to local heating
瞬态热整流透明纳米粒子还原键合现象的观察及其在局部加热中的应用
- 批准号:
23H01316 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Thermally Activated Wide-Gap Semiconductor Single Nanoparticles for Thermal Catalytic Function
用于热催化功能的热激活宽禁带半导体单纳米粒子
- 批准号:
22H01915 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-intensity focused ultrasound (HIFU) energized functionalized nanoparticles mediated enhanced thermal ablation of tumors
高强度聚焦超声(HIFU)赋能功能化纳米颗粒介导增强肿瘤热消融
- 批准号:
2045234 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Innovative large-scale synthesis technology of pure nanoparticles by spatio-temporally controlled field in tandem-type of induction thermal plasma
串联式感应热等离子体时空控制场纯纳米颗粒创新大规模合成技术
- 批准号:
20H00239 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Magnetic Nanoparticles for Simultaneous Thermal, Photodynamic, and Chemotherapy Treatment of Prostate Cancer
开发用于同步热、光动力和化疗治疗前列腺癌的磁性纳米颗粒
- 批准号:
20K18122 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Improving MRI Guided Thermal Therapies by Designed Magnetic Nanoparticles
SBIR 第一阶段:通过设计的磁性纳米颗粒改进 MRI 引导热疗法
- 批准号:
1843616 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Microstructure control of water-contained nanoparticles for thermal storage
用于蓄热的含水纳米颗粒的微观结构控制
- 批准号:
18K04699 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermal phononics materials utilizing self-assemblies of polymer-grafted nanoparticles
利用聚合物接枝纳米粒子自组装的热声子材料
- 批准号:
18K19108 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
- 批准号:
1702471 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant